54 Commits

Author SHA1 Message Date
1b7581e656 MetaNetworks Debugged II 2022-02-01 18:17:11 +01:00
246d825bb4 MetaNetworks Debugged 2022-01-31 10:35:11 +01:00
49c0d8a621 MetaNetworks 2022-01-26 16:56:05 +01:00
5f1f5833d8 Journal TEx Text 2022-01-21 17:28:45 +01:00
21dd572969 Merge remote-tracking branch 'origin/journal' into journal
# Conflicts:
#	journal_basins.py
2021-09-13 16:06:03 +02:00
5f6c658068 Journal TEx Text 2021-09-13 16:04:48 +02:00
e51d7ad0b9 Added parent-vs-children plot, changed x-tick labels to base10 notation. 2021-09-07 18:15:06 +02:00
6c1a964f31 Second order function 2021-08-24 10:35:29 +02:00
b22a7ac427 in between plots 2021-06-28 10:51:21 +02:00
6c2d544f7c logspace.... 2021-06-25 17:46:45 +02:00
5a7dad2363 Merge remote-tracking branch 'origin/journal' into journal
# Conflicts:
#	journal_soup_basins.py
2021-06-25 10:29:39 +02:00
14d9a533cb journal linspace basins 2021-06-25 10:25:25 +02:00
f7a0d360b3 updated journal_soup_basin: all working, only orange lines not showing 2021-06-24 16:48:52 +03:00
cf6eec639f Fixed exp pickle save. Added exp results. Fixed soup plot issue. 2021-06-20 17:09:17 +02:00
1da5bd95d6 Added before-after-plot. 2021-06-17 15:53:48 +02:00
b40b534d5b Small fix for PCA plotting in linspace. 2021-06-15 17:18:40 +02:00
27d763f1fb journal linspace basins 2021-06-15 14:11:40 +02:00
0ba109c083 journal linspace basins 2021-06-14 11:55:11 +02:00
e156540e2c readme update 2021-06-11 14:41:35 +02:00
0e2289344a robustness 2021-06-11 14:38:22 +02:00
987d7b95f3 debugged journal_soup_basin experiment 2021-06-07 11:12:59 +03:00
7e231b5b50 Merge branch 'journal' of gitlab.lrz.de:mobile-ifi/bannana-networks into journal 2021-06-05 17:50:45 +03:00
2077d800ae fixed soup_basin experiment 2021-06-05 17:44:37 +03:00
b57d3d32fd readme updated 2021-06-04 15:01:16 +02:00
61ae8c2ee5 robustness fixed 2021-06-04 14:13:38 +02:00
800a2c8f6b Merge remote-tracking branch 'origin/journal' into journal
# Conflicts:
#	journal_basins.py
2021-06-04 14:03:50 +02:00
9abde030af robustness cleaned 2021-06-04 14:03:03 +02:00
0320957b85 implements basin experiments for soup 2021-06-02 02:49:18 +03:00
32ebb729e8 Added plot variations for basin exp. 2021-05-27 16:02:41 +02:00
c9efe0a31b journal_robustness.py redone, now is sensitive to seeds and plots 2021-05-25 17:07:24 +02:00
5e5511caf8 journal_robustness.py redone, now is sensitive to seeds and plots 2021-05-23 15:49:48 +02:00
55bdd706b6 journal_robustness.py redone, now is sensitive to seeds and plots 2021-05-23 13:46:21 +02:00
74d618774a application losses II 2021-05-23 10:36:22 +02:00
54590eb147 application losses 2021-05-23 10:33:54 +02:00
b1dc574f5b Added distinction time-as-fixpoint and time-to-vergence to be tracked. 2021-05-22 14:43:20 +02:00
e9f6620b60 Robustness test with synthetic and natural fixpoints. Should now work as
intended. Noise gets added to weights instead of input.
2021-05-22 14:27:45 +02:00
bcfe5807a7 Added pickle save() function for SpawnExperiment, updated README, set
plot-pca-all false on default, just True for SpawnExp for now.
2021-05-21 16:37:27 +02:00
1e8ccd2b8b PCA now fit and transform over all trajectories. Networks now have
start-time properties for that to control where plotting starts. Added distance from
parent table/matrix.
2021-05-21 15:28:09 +02:00
f5ca3d1115 save weights instead of outputs 2021-05-17 09:21:01 +02:00
c1f58f2675 All Experiments debugged
ToDo:
 - convert strings in pathlib.Path objects
 - check usage of fixpoint tests
2021-05-16 15:34:43 +02:00
36377ee27d functionalities_test.py updated 2021-05-16 14:51:21 +02:00
b1472479cb journal_basins.py debugged II
Questions for functionalities_test.py
corrected some fixes
Redo and implementation of everything path related now using pathlib.Path
2021-05-16 13:35:38 +02:00
042188f15a journal_basins.py debugged 2021-05-16 11:30:34 +02:00
5074100b71 Merge remote-tracking branch 'origin/journal' into journal 2021-05-14 17:58:01 +02:00
4b5c36f6c0 - rearanged experiments.py into single runable files
- Reformated net.self_x functions (sa, st)
- corrected robustness_exp.py
- NO DEBUGGING DONE!!!!!
2021-05-14 17:57:44 +02:00
56ea007f2b numbering of the points for easy addressing 2021-05-14 14:00:55 +00:00
22d34d4e75 some work on the new journal experiments with cristions code 2021-05-14 09:13:42 +02:00
9bf37486a0 Update README.md 2021-05-03 06:50:33 +00:00
e176d05cf5 uploaded my code (not yet 100% finished) 2021-05-03 06:43:53 +00:00
9bd65713fe deleted all filed from the old code 2021-05-03 06:36:23 +00:00
9ce36c2d0e Merge remote-tracking branch 'origin/master' 2019-06-17 15:20:13 +02:00
4d5ef0e536 TF 113 imports 2019-06-17 15:19:15 +02:00
6c90c3d739 camera ready 2019-05-24 15:38:11 +02:00
0c9fb6efb9 yesterday's final fixes 2019-03-17 20:41:59 +01:00
124 changed files with 3647 additions and 7303 deletions

573
.gitignore vendored
View File

@ -1,572 +1 @@
# Created by https://www.gitignore.io/api/data,linux,macos,python,windows,pycharm,database,jupyternotebook /output/
# Edit at https://www.gitignore.io/?templates=data,linux,macos,python,windows,pycharm,database,jupyternotebook
### Local Datasets ###
/experiments
/setups/experiments
### Data ###
*.csv
*.dat
*.efx
*.gbr
*.key
*.pps
*.ppt
*.pptx
*.sdf
*.tax2010
*.vcf
*.xml
### Database ###
*.accdb
*.db
*.dbf
*.mdb
*.pdb
*.sqlite3
### JupyterNotebook ###
.ipynb_checkpoints
*/.ipynb_checkpoints/*
# Remove previous ipynb_checkpoints
# git rm -r .ipynb_checkpoints/
#
### Linux ###
*~
# temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden*
# KDE directory preferences
.directory
# Linux trash folder which might appear on any partition or disk
.Trash-*
# .nfs files are created when an open file is removed but is still being accessed
.nfs*
### macOS ###
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
### PyCharm ###
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
### PyCharm Patch ###
# Comment Reason: https://github.com/joeblau/gitignore.io/issues/186#issuecomment-215987721
# *.iml
# modules.xml
# .idea/misc.xml
# *.ipr
# Sonarlint plugin
.idea/sonarlint
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
### Python Patch ###
.venv/
### Windows ###
# Windows thumbnail cache files
Thumbs.db
ehthumbs.db
ehthumbs_vista.db
# Dump file
*.stackdump
# Folder config file
[Dd]esktop.ini
# Recycle Bin used on file shares
$RECYCLE.BIN/
# Windows Installer files
*.cab
*.msi
*.msix
*.msm
*.msp
# Windows shortcuts
*.lnk
# pycharm
.idea/
#######################################
#### Tex related
## Core latex/pdflatex auxiliary files:
*.aux
*.lof
*.log
*.lot
*.fls
*.out
*.toc
*.fmt
*.fot
*.cb
*.cb2
.*.lb
## Intermediate documents:
*.dvi
*.xdv
*-converted-to.*
# these rules might exclude image files for figures etc.
# *.ps
# *.eps
# *.pdf
## Generated if empty string is given at "Please type another file name for output:"
.pdf
## Bibliography auxiliary files (bibtex/biblatex/biber):
*.bbl
*.bcf
*.blg
*-blx.aux
*-blx.bib
*.run.xml
## Build tool auxiliary files:
*.fdb_latexmk
*.synctex
*.synctex(busy)
*.synctex.gz
*.synctex.gz(busy)
*.pdfsync
## Build tool directories for auxiliary files
# latexrun
latex.out/
## Auxiliary and intermediate files from other packages:
# algorithms
*.alg
*.loa
# achemso
acs-*.bib
# amsthm
*.thm
# beamer
*.nav
*.pre
*.snm
*.vrb
# changes
*.soc
# comment
*.cut
# cprotect
*.cpt
# elsarticle (documentclass of Elsevier journals)
*.spl
# endnotes
*.ent
# fixme
*.lox
# feynmf/feynmp
*.mf
*.mp
*.t[1-9]
*.t[1-9][0-9]
*.tfm
#(r)(e)ledmac/(r)(e)ledpar
*.end
*.?end
*.[1-9]
*.[1-9][0-9]
*.[1-9][0-9][0-9]
*.[1-9]R
*.[1-9][0-9]R
*.[1-9][0-9][0-9]R
*.eledsec[1-9]
*.eledsec[1-9]R
*.eledsec[1-9][0-9]
*.eledsec[1-9][0-9]R
*.eledsec[1-9][0-9][0-9]
*.eledsec[1-9][0-9][0-9]R
# glossaries
*.acn
*.acr
*.glg
*.glo
*.gls
*.glsdefs
# gnuplottex
*-gnuplottex-*
# gregoriotex
*.gaux
*.gtex
# htlatex
*.4ct
*.4tc
*.idv
*.lg
*.trc
*.xref
# hyperref
*.brf
# knitr
*-concordance.tex
# TODO Comment the next line if you want to keep your tikz graphics files
*.tikz
*-tikzDictionary
# listings
*.lol
# makeidx
*.idx
*.ilg
*.ind
*.ist
# minitoc
*.maf
*.mlf
*.mlt
*.mtc[0-9]*
*.slf[0-9]*
*.slt[0-9]*
*.stc[0-9]*
# minted
_minted*
*.pyg
# morewrites
*.mw
# nomencl
*.nlg
*.nlo
*.nls
# pax
*.pax
# pdfpcnotes
*.pdfpc
# sagetex
*.sagetex.sage
*.sagetex.py
*.sagetex.scmd
# scrwfile
*.wrt
# sympy
*.sout
*.sympy
sympy-plots-for-*.tex/
# pdfcomment
*.upa
*.upb
# pythontex
*.pytxcode
pythontex-files-*/
# tcolorbox
*.listing
# thmtools
*.loe
# TikZ & PGF
*.dpth
*.md5
*.auxlock
# todonotes
*.tdo
# vhistory
*.hst
*.ver
# easy-todo
*.lod
# xcolor
*.xcp
# xmpincl
*.xmpi
# xindy
*.xdy
# xypic precompiled matrices
*.xyc
# endfloat
*.ttt
*.fff
# Latexian
TSWLatexianTemp*
## Editors:
# WinEdt
*.bak
*.sav
# Texpad
.texpadtmp
# LyX
*.lyx~
# Kile
*.backup
# KBibTeX
*~[0-9]*
# auto folder when using emacs and auctex
./auto/*
*.el
# expex forward references with \gathertags
*-tags.tex
# standalone packages
*.sta
# End of https://www.gitignore.io/api/data,linux,macos,python,windows,pycharm,database,jupyternotebook

View File

@ -1,2 +1,52 @@
# bannana-networks # self-rep NN paper - ALIFE journal edition
- [x] Plateau / Pillar sizeWhat does happen to the fixpoints after noise introduction and retraining?Options beeing: Same Fixpoint, Similar Fixpoint (Basin),
- Different Fixpoint?
Yes, we did not found same (10-5)
- Do they do the clustering thingy?
Kind of: Small movement towards (MIM-Distance getting smaller) parent fixpoint.
Small movement for everyone? -> Distribution
- see `journal_basins.py` for the "train -> spawn with noise -> train again and see where they end up" functionality. Apply noise follows the `vary` function that was used in the paper robustness test with `+- prng() * eps`. Change if desired.
- there is also a distance matrix for all-to-all particle comparisons (with distance parameter one of: `MSE`, `MAE` (mean absolute error = mean manhattan) and `MIM` (mean position invariant manhattan))
- [ ] Same Thing with Soup interaction. We would expect the same behaviour...Influence of interaction with near and far away particles.
-
-
- [x] Robustness test with a trained NetworkTraining for high quality fixpoints, compare with the "perfect" fixpoint. Average Loss per application step
- see `journal_robustness.py` for robustness test modeled after cristians robustness-exp (with the exeption that we put noise on the weights). Has `synthetic` bool to switch to hand-modeled perfect fixpoint instead of naturally trained ones.
- Also added two difference between the "time-as-fixpoint" and "time-to-verge" (i.e. to divergence / zero).
- We might need to consult about the "average loss per application step", as I think application loss get gradually higher the worse the weights get. So the average might not tell us much here.
- [x] Adjust Self Training so that it favors second order fixpoints-> Second order test implementation (?)
- [x] Barplot over clones -> how many become a fixpoint cs how many diverge per noise level
- [x] Box-Plot of Avg. Distance of clones from parent
- [x] Search subspace between two fixpoints by linage(10**-5), check were they end up
- [x] How are basins / "attractor areas" shaped?
# Future Todos:
- [ ] Find a statistik over weight space that provides a better init function
- [ ] Test this init function on a mnist classifier - just for the lolz
---
## Notes:
- In the spawn-experiment we now fit and transform the PCA over *ALL* trajectories, instead of each net-history by its own. This can be toggled by the `plot_pca_together` parameter in `visualisation.py/plot_3d_self_train() & plot_3d()` (default: `False` but set `True` in the spawn-experiment class).
- I have also added a `start_time` property for the nets (default: `1`). This is intended to be set flexibly for e.g., clones (when they are spawned midway through the experiment), such that the PCA can start the plotting trace from this timestep. When we spawn clones we deepcopy their parent's saved weight_history too, so that the PCA transforms same lenght trajectories. With `plot_pca_together` that means that clones and their parents will literally be plotted perfectly overlayed on top, up until the spawn-time, where you can see the offset / noise we apply. By setting the start_time, you can avoid this overlap and avoid hiding the parent's trace color which gets plotted first (because the parent is always added to self.nets first). **But more importantly, you can effectively zoom into the plot, by setting the parents start-time to just shy of the end of first epoch (where they get checked on fixpoint-property and spawn clones) and the start-times of clones to the second epoch. This will make the plot begin at spawn time, cutting off the parents initial trajectory and zoom-in to the action (see. `journal_basins.py/spawn_and_continue()`).**
- Now saving the whole experiment class as pickle dump (`experiment_pickle.p`, just like cristian), hope thats fine.
- Added a `requirement.txt` for quick venv / pip -r installs. Append as necessary.

View File

@ -1,171 +0,0 @@
import os
import time
import dill
from tqdm import tqdm
import copy
from tensorflow.python.keras import backend as K
from abc import ABC, abstractmethod
class Experiment(ABC):
@staticmethod
def from_dill(path):
with open(path, "rb") as dill_file:
return dill.load(dill_file)
@staticmethod
def reset_model():
K.clear_session()
def __init__(self, name=None, ident=None):
self.experiment_id = f'{ident or ""}_{time.time()}'
self.experiment_name = name or 'unnamed_experiment'
self.next_iteration = 0
self.log_messages = list()
self.historical_particles = dict()
def __enter__(self):
self.dir = os.path.join('experiments', f'exp-{self.experiment_name}-{self.experiment_id}-{self.next_iteration}')
os.makedirs(self.dir)
print(f'** created {self.dir} **')
return self
def __exit__(self, exc_type, exc_value, traceback):
self.save(experiment=self.without_particles())
self.save_log()
self.next_iteration += 1
def log(self, message, **kwargs):
self.log_messages.append(message)
print(message, **kwargs)
def save_log(self, log_name="log"):
with open(os.path.join(self.dir, f"{log_name}.txt"), "w") as log_file:
for log_message in self.log_messages:
print(str(log_message), file=log_file)
def __copy__(self):
self_copy = self.__class__(name=self.experiment_name,)
self_copy.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
attr not in ['particles', 'historical_particles']}
return self_copy
def without_particles(self):
self_copy = copy.copy(self)
# self_copy.particles = [particle.states for particle in self.particles]
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
return self_copy
def save(self, **kwargs):
for name, value in kwargs.items():
with open(os.path.join(self.dir, f"{name}.dill"), "wb") as dill_file:
dill.dump(value, dill_file)
@abstractmethod
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
raise NotImplementedError
pass
def run_exp(self, network_generator, exp_iterations, prints=False, **kwargs):
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
for run_id in range(exp_iterations):
network = network_generator()
self.run_net(network, 100, run_id=run_id + 1, **kwargs)
self.historical_particles[run_id] = network
if prints:
print("Fixpoint? " + str(network.is_fixpoint()))
self.reset_model()
def reset_all(self):
self.reset_model()
class FixpointExperiment(Experiment):
if kwargs.get('logging', False):
self.log(self.counters)
def __init__(self, **kwargs):
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super().__init__(**kwargs)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
i += 1
if run_id:
net.save_state(time=i)
self.count(net)
def count(self, net):
if net.is_diverged():
self.counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
self.counters['fix_zero'] += 1
else:
self.counters['fix_other'] += 1
self.interesting_fixpoints.append(net.get_weights())
elif net.is_fixpoint(2):
self.counters['fix_sec'] += 1
else:
self.counters['other'] += 1
def reset_counters(self):
for key in self.counters.keys():
self.counters[key] = 0
return True
def reset_all(self):
super(FixpointExperiment, self).reset_all()
self.reset_counters()
class MixedFixpointExperiment(FixpointExperiment):
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
for i in range(step_limit):
if net.is_diverged() or net.is_fixpoint():
break
net.self_attack()
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
for _ in range(trains_per_application):
loss = net.compiled().train()
bar.postfix[1]["value"] = loss
bar.update()
if run_id:
net.save_state()
self.count(net)
class SoupExperiment(Experiment):
def __init__(self, **kwargs):
super(SoupExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
def run_exp(self, network_generator, exp_iterations, soup_generator=None, soup_iterations=0, prints=False):
for i in range(soup_iterations):
soup = soup_generator()
soup.seed()
for _ in tqdm(exp_iterations):
soup.evolve()
self.log(soup.count())
self.save(soup=soup.without_particles())
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
raise NotImplementedError
pass
class IdentLearningExperiment(Experiment):
def __init__(self):
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
pass

File diff suppressed because one or more lines are too long

View File

@ -1,618 +0,0 @@
import numpy as np
from abc import abstractmethod, ABC
from typing import List, Union
from types import FunctionType
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.callbacks import Callback
from tensorflow.python.keras.layers import SimpleRNN, Dense
from tensorflow.python.keras import backend as K
from experiment import *
# Supress warnings and info messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class SaveStateCallback(Callback):
def __init__(self, network, epoch=0):
super(SaveStateCallback, self).__init__()
self.net = network
self.init_epoch = epoch
def on_epoch_end(self, epoch, logs=None):
description = dict(time=epoch+self.init_epoch)
description['action'] = 'train_self'
description['counterpart'] = None
self.net.save_state(**description)
return
class Weights:
@staticmethod
def __reshape_flat_array__(array, shapes):
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
# Split the incoming array into slices for layers
slices = [array[x: y] for x, y in zip(np.cumsum([0]+sizes), np.cumsum([0]+sizes)[1:])]
# reshape them in accordance to the given shapes
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
return weights
def __init__(self, weight_vector: Union[List[np.ndarray], np.ndarray], flat_array_shape=None):
"""
Weight class, for easy manipulation of weight vectors from Keras models
:param weight_vector: A numpy array holding weights
:type weight_vector: List[np.ndarray]
"""
self.__iter_idx = [0, 0]
if flat_array_shape:
weight_vector = self.__reshape_flat_array__(weight_vector, flat_array_shape)
self.layers = weight_vector
# TODO: implement a way to access the cells directly
# self.cells = len(self)
# TODO: implement a way to access the weights directly
# self.weights = self.to_flat_array() ?
def __iter__(self):
self.__iter_idx = [0, 0]
return self
def __getitem__(self, item):
return self.layers[item]
def max(self):
np.max(self.layers)
def avg(self):
return np.average(self.layers)
def __len__(self):
return sum([x.size for x in self.layers])
def shapes(self):
return [x.shape for x in self.layers]
def num_layers(self):
return len(self.layers)
def __copy__(self):
return copy.deepcopy(self)
def __next__(self):
# ToDo: Check iteration progress over layers
# ToDo: There is still a problem interation, currently only cell level is the last loop stage.
# Do we need this?
if self.__iter_idx[0] >= len(self.layers):
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
raise StopIteration
result = self.layers[self.__iter_idx[0]][self.__iter_idx[1]]
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
self.__iter_idx[0] += 1
self.__iter_idx[1] = 0
else:
self.__iter_idx[1] += 1
return result
def __repr__(self):
return f'Weights({self.to_flat_array().tolist()})'
def to_flat_array(self) -> np.ndarray:
return np.hstack([weight.flatten() for weight in self.layers])
def from_flat_array(self, array):
new_weights = self.__reshape_flat_array__(array, self.shapes())
return new_weights
def shuffle(self):
flat = self.to_flat_array()
np.random.shuffle(flat)
self.from_flat_array(flat)
return True
def are_diverged(self):
return any([np.isnan(x).any() for x in self.layers]) or any([np.isinf(x).any() for x in self.layers])
def are_within_bounds(self, lower_bound: float, upper_bound: float):
return bool(sum([((lower_bound < x) & (x > upper_bound)).size for x in self.layers]))
def aggregate_by(self, func: FunctionType, num_aggregates):
collection_sizes = len(self) // num_aggregates
weights = self.to_flat_array()[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
aggregated_weights = func(weights, num_aggregates)
left_overs = self.to_flat_array()[collection_sizes * num_aggregates:]
return aggregated_weights, left_overs
class NeuralNetwork(ABC):
"""
This is the Base Network Class, including abstract functions that must be implemented.
"""
def __init__(self, **params):
super().__init__()
self.params = dict(epsilon=0.00000000000001)
self.params.update(params)
self.keras_params = dict(activation='linear', use_bias=False)
self.states = []
self.model: Sequential
def get_params(self) -> dict:
return self.params
def get_keras_params(self) -> dict:
return self.keras_params
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def with_keras_params(self, **kwargs):
self.keras_params.update(kwargs)
return self
def get_weights(self) -> Weights:
return Weights(self.model.get_weights())
def get_weights_flat(self) -> np.ndarray:
return self.get_weights().to_flat_array()
def set_weights(self, new_weights: Weights):
return self.model.set_weights(new_weights.layers)
@abstractmethod
def get_samples(self):
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
raise NotImplementedError
@abstractmethod
def apply_to_weights(self, old_weights) -> Weights:
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
raise NotImplementedError
def apply_to_network(self, other_network) -> Weights:
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
new_weights = self.apply_to_weights(other_network.get_weights())
return new_weights
def attack(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is an attack?
other_network.set_weights(self.apply_to_network(other_network))
return self
def fuck(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is fucking?
self.set_weights(self.apply_to_network(other_network))
return self
def self_attack(self, iterations=1):
# TODO: add a dogstring, telling the user what this does, e.g. what is self attack?
for _ in range(iterations):
self.attack(self)
return self
def meet(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is meeting?
new_other_network = copy.deepcopy(other_network)
return self.attack(new_other_network)
def is_diverged(self):
return self.get_weights().are_diverged()
def is_zero(self, epsilon=None):
epsilon = epsilon or self.get_params().get('epsilon')
return self.get_weights().are_within_bounds(-epsilon, epsilon)
def is_fixpoint(self, degree: int = 1, epsilon: float = None) -> bool:
assert degree >= 1, "degree must be >= 1"
epsilon = epsilon or self.get_params().get('epsilon')
new_weights = copy.deepcopy(self.get_weights())
for _ in range(degree):
new_weights = self.apply_to_weights(new_weights)
if new_weights.are_diverged():
return False
biggerEpsilon = (np.abs(new_weights.to_flat_array() - self.get_weights().to_flat_array()) >= epsilon).any()
# Boolean Value needs to be flipped to answer "is_fixpoint"
return not biggerEpsilon
def print_weights(self, weights=None):
print(weights or self.get_weights())
class ParticleDecorator:
next_uid = 0
def __init__(self, network):
# ToDo: Add DocString, What does it do?
self.uid = self.__class__.next_uid
self.__class__.next_uid += 1
self.network = network
self.states = []
self.save_state(time=0, action='init', counterpart=None)
def __getattr__(self, name):
return getattr(self.network, name)
def get_uid(self):
return self.uid
def make_state(self, **kwargs):
if self.network.is_diverged():
return None
state = {'class': self.network.__class__.__name__, 'weights': self.network.get_weights_flat()}
state.update(kwargs)
return state
def save_state(self, **kwargs):
state = self.make_state(**kwargs)
if state is not None:
self.states += [state]
else:
pass
return True
def update_state(self, number, **kwargs):
raise NotImplementedError('Result is vague')
# if number < len(self.states):
# self.states[number] = self.make_state(**kwargs)
# else:
# for i in range(len(self.states), number):
# self.states += [None]
# self.states += self.make_state(**kwargs)
def get_states(self):
return self.states
class WeightwiseNeuralNetwork(NeuralNetwork):
def __init__(self, width, depth, **kwargs):
# ToDo: Insert Docstring
super().__init__(**kwargs)
self.width: int = width
self.depth: int = depth
self.model = Sequential()
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
for _ in range(self.depth-1):
self.model.add(Dense(units=self.width, **self.keras_params))
self.model.add(Dense(units=1, **self.keras_params))
def apply(self, inputs):
# TODO: Write about it... What does it do?
return self.model.predict(inputs)
def get_samples(self):
weights = self.get_weights()
sample = np.asarray([
[weight, idx, *x] for idx, layer in enumerate(weights.layers) for x, weight in np.ndenumerate(layer)
])
# normalize [layer, cell, position]
for idx in range(1, sample.shape[1]):
sample[:, idx] = sample[:, idx] / np.max(sample[:, idx])
return sample, sample
def apply_to_weights(self, weights) -> Weights:
# ToDo: Insert DocString
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
transformed_weights = self.get_samples()[0]
new_weights = self.apply(transformed_weights)
# use the original weight shape to transform the new tensor
return Weights(new_weights, flat_array_shape=weights.shapes())
class AggregatingNeuralNetwork(NeuralNetwork):
@staticmethod
def aggregate_fft(array: np.ndarray, aggregates: int):
flat = array.flatten()
# noinspection PyTypeChecker
fft_reduction = np.fft.fftn(flat, aggregates)
return fft_reduction
@staticmethod
def aggregate_average(array, _):
return np.average(array, axis=1)
@staticmethod
def aggregate_max(array, _):
return np.max(array, axis=1)
@staticmethod
def deaggregate_identically(aggregate, amount):
# ToDo: Find a better way than using the a hardcoded [0]
return np.hstack([aggregate for _ in range(amount)])[0]
@staticmethod
def shuffle_not(weights: Weights):
"""
Doesn't do a thing. f(x)
:param weights: A List of Weights
:type weights: Weights
:return: The same old weights.
:rtype: Weights
"""
return weights
@staticmethod
def shuffle_random(weights: Weights):
assert weights.shuffle()
return weights
def __init__(self, aggregates, width, depth, **kwargs):
super().__init__(**kwargs)
self.aggregates = aggregates
self.width = width
self.depth = depth
self.model = Sequential()
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
for _ in range(depth-1):
self.model.add(Dense(units=width, **self.keras_params))
self.model.add(Dense(units=self.aggregates, **self.keras_params))
def get_aggregator(self):
return self.params.get('aggregator', self.aggregate_average)
def get_deaggregator(self):
return self.params.get('deaggregator', self.deaggregate_identically)
def get_shuffler(self):
return self.params.get('shuffler', self.shuffle_not)
def get_amount_of_weights(self):
return len(self.get_weights())
def apply(self, inputs):
# You need to add an dimension here... "..." copies array values
return self.model.predict(inputs[None, ...])
def get_aggregated_weights(self):
return self.get_weights().aggregate_by(self.get_aggregator(), self.aggregates)
def apply_to_weights(self, old_weights) -> Weights:
# build aggregations of old_weights
old_aggregations, leftovers = self.get_aggregated_weights()
# call network
new_aggregations = self.apply(old_aggregations)
collection_sizes = self.get_amount_of_weights() // self.aggregates
new_aggregations = self.deaggregate_identically(new_aggregations, collection_sizes)
# generate new weights
# only include leftovers if there are some then coonvert them to Weight on base of th old shape
new_weights = Weights(new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers)),
flat_array_shape=old_weights.shapes())
# maybe shuffle
new_weights = self.get_shuffler()(new_weights)
return new_weights
def get_samples(self):
aggregations, _ = self.get_aggregated_weights()
# What did that do?
# sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
return aggregations, aggregations
def is_fixpoint_after_aggregation(self, degree=1, epsilon=None):
assert degree >= 1, "degree must be >= 1"
epsilon = epsilon or self.get_params().get('epsilon')
old_aggregations, _ = self.get_aggregated_weights()
new_weights = copy.deepcopy(self.get_weights())
for _ in range(degree):
new_weights = self.apply_to_weights(new_weights)
if new_weights.are_diverged():
return False
new_aggregations, leftovers = self.get_aggregated_weights()
# ToDo: Explain This, why are you additionally checking tolerances of aggregated weights?
biggerEpsilon = (np.abs(np.asarray(old_aggregations) - np.asarray(new_aggregations)) >= epsilon).any()
# Boolean value has to be flipped to answer the question.
return True, not biggerEpsilon
class RecurrentNeuralNetwork(NeuralNetwork):
def __init__(self, width, depth, **kwargs):
super().__init__(**kwargs)
self.features = 1
self.width = width
self.depth = depth
self.model = Sequential()
self.model.add(SimpleRNN(units=width, input_dim=self.features, return_sequences=True, **self.keras_params))
for _ in range(depth-1):
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
def apply(self, *inputs):
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
return self.model.predict(stuff)[0].flatten()
def apply_to_weights(self, old_weights):
# build list from old weights
new_weights = copy.deepcopy(old_weights)
old_weights_list = []
for layer_id, layer in enumerate(old_weights):
for cell_id, cell in enumerate(layer):
for weight_id, weight in enumerate(cell):
old_weights_list += [weight]
# call network
new_weights_list = self.apply(*old_weights_list)
# write back new weights from list of rnn returns
current_weight_id = 0
for layer_id, layer in enumerate(new_weights):
for cell_id, cell in enumerate(layer):
for weight_id, weight in enumerate(cell):
new_weight = new_weights_list[current_weight_id]
new_weights[layer_id][cell_id][weight_id] = new_weight
current_weight_id += 1
return new_weights
def compute_samples(self):
# build list from old weights
old_weights_list = []
for layer_id, layer in enumerate(self.get_weights()):
for cell_id, cell in enumerate(layer):
for weight_id, weight in enumerate(cell):
old_weights_list += [weight]
sample = np.asarray(old_weights_list)[None, ..., None]
return sample, sample
class TrainingNeuralNetworkDecorator:
def __init__(self, network):
self.network = network
self.compile_params = dict(loss='mse', optimizer='sgd')
self.model_compiled = False
def __getattr__(self, name):
return getattr(self.network, name)
def with_params(self, **kwargs):
self.network.with_params(**kwargs)
return self
def with_keras_params(self, **kwargs):
self.network.with_keras_params(**kwargs)
return self
def get_compile_params(self):
return self.compile_params
def with_compile_params(self, **kwargs):
self.compile_params.update(kwargs)
return self
def compile_model(self, **kwargs):
compile_params = copy.deepcopy(self.compile_params)
compile_params.update(kwargs)
return self.network.model.compile(**compile_params)
def compiled(self, **kwargs):
if not self.model_compiled:
self.compile_model(**kwargs)
self.model_compiled = True
return self
def train(self, batchsize=1, store_states=True, epoch=0):
self.compiled()
x, y = self.network.get_samples()
savestatecallback = [SaveStateCallback(network=self, epoch=epoch)] if store_states else None
history = self.network.model.fit(x=x, y=y, epochs=epoch+1, verbose=0,
batch_size=batchsize, callbacks=savestatecallback,
initial_epoch=epoch)
return history.history['loss'][-1]
def learn_from(self, other_network, batchsize=1):
self.compiled()
other_network.compiled()
x, y = other_network.network.get_samples()
history = self.network.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
return history.history['loss'][-1]
if __name__ == '__main__':
if True:
# WeightWise Neural Network
net_generator = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear'))
with FixpointExperiment() as exp:
exp.run_exp(net_generator, 10, logging=True)
exp.reset_all()
if False:
# Aggregating Neural Network
net_generator = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params())
with FixpointExperiment() as exp:
exp.run_exp(net_generator, 10, logging=True)
exp.reset_all()
if False:
# FFT Aggregation
net_generator = lambda: ParticleDecorator(
AggregatingNeuralNetwork(
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft
).with_keras_params(activation='linear'))
with FixpointExperiment() as exp:
for run_id in tqdm(range(10)):
exp.run_exp(net_generator, 1)
exp.log(exp.counters)
exp.reset_model()
exp.reset_all()
if True:
# ok so this works quite realiably
run_count = 10000
net_generator = TrainingNeuralNetworkDecorator(
ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2))
).with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
with MixedFixpointExperiment() as exp:
for run_id in tqdm(range(run_count+1)):
exp.run_exp(net_generator, 1)
if run_id % 100 == 0:
exp.run_net(net_generator, 1)
K.clear_session()
if False:
with FixpointExperiment() as exp:
run_count = 1000
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train()
if run_id % 100 == 0:
net.print_weights()
old_aggs, _ = net.net.get_aggregated_weights()
print("old weights agg: " + str(old_aggs))
fp, new_aggs = net.net.is_fixpoint_after_aggregation(epsilon=0.0001)
print("new weights agg: " + str(new_aggs))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Fixpoint after Agg? " + str(fp))
print("Loss " + str(loss))
print()
if False:
# this explodes in our faces completely... NAN everywhere
# TODO: Wtf is happening here?
with FixpointExperiment() as exp:
run_count = 10000
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2))\
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train()
if run_id % 500 == 0:
net.print_weights()
# print(net.apply_to_network(net))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Loss " + str(loss))
print()
if False:
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
# over multiple applications when training enough in-between
with MixedFixpointExperiment() as exp:
for run_id in range(10):
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
.with_params(epsilon=0.0001, activation='sigmoid')
exp.run_net(net, 500, 10)
net.print_weights()
print("Fixpoint? " + str(net.is_fixpoint()))
exp.log(exp.counters)

Binary file not shown.

View File

@ -1 +0,0 @@
{'divergent': 0, 'fix_zero': 0, 'fix_other': 13, 'fix_sec': 0, 'other': 7}

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@ -1,30 +0,0 @@
[-0.15321673 1.0428386 -0.7245892 -0.04343993 0.42338863 0.02538261
-0.40465942 -0.0242596 -1.226809 -0.8168446 0.26588777 -1.0929432
0.5383322 -0.73875046]
[-0.03072096 -1.369665 -0.357126 -0.21180922 0.3853204 0.22853081
-0.3705557 -0.21977347 -0.6684716 0.12849599 1.0226644 -0.0922638
-0.7828449 -0.6572327 ]
[-1.2444692 0.61213857 0.07965802 0.12361202 0.62641835 0.9720597
0.3863232 0.59948945 1.0857513 0.49231085 -0.5319295 0.29433587
-0.64177823 0.17603302]
[-0.9938292 -0.4438207 -0.03172896 0.06261964 -0.3870194 0.7637992
0.0244509 -0.04825407 0.91551745 -0.78740424 0.29226422 -0.52767307
-0.41744384 0.5567152 ]
[-0.39049304 0.8842579 -0.8447943 -0.19669186 0.7207061 0.16780053
0.3728221 0.08680353 0.7535456 -0.1000197 0.02029054 0.8640245
-0.15881588 1.1905665 ]
[ 1.0482084 0.9248296 -0.26946014 0.57047915 -0.32660747 0.6914731
-0.18025818 0.3816289 -0.69358927 0.21312684 -0.39932403 -0.02991759
-0.83068466 0.45619962]
[ 0.75814664 0.10328437 0.07867077 -0.0743314 -0.53440267 0.50492585
-0.54172474 0.51184535 0.3462249 1.0527638 -0.9503541 0.9235086
-0.1665241 1.1497779 ]
[-0.77187353 1.1105504 0.24265823 0.53782856 -0.34098852 -0.75576884
-0.25396293 -0.56288165 0.3851537 -0.67497945 0.14336896 0.763481
-0.9224985 0.6374753 ]
[-0.79123825 0.68166596 -0.30061013 -0.19360289 0.5632736 0.36276665
0.7470975 0.48115698 0.10046808 -0.8064349 -1.036736 -0.68296516
-1.156437 0.52633154]
[ 0.1788832 -1.5321186 -0.62001514 -0.3870902 0.97524184 0.6088638
-0.08297889 -0.05180515 -0.29096788 0.7519439 0.8803648 0.82771575
-0.854887 0.1742936 ]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

File diff suppressed because one or more lines are too long

View File

@ -1,12 +0,0 @@
WeightwiseNeuralNetwork activiation='linear' use_bias=False
{'divergent': 23, 'fix_zero': 27, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
AggregatingNeuralNetwork activiation='linear' use_bias=False
{'divergent': 4, 'fix_zero': 46, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
RecurrentNeuralNetwork activiation='linear' use_bias=False
{'divergent': 46, 'fix_zero': 4, 'fix_other': 0, 'fix_sec': 0, 'other': 0}

File diff suppressed because one or more lines are too long

View File

@ -1,4 +0,0 @@
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'zs': [0.0, 1.2, 5.2, 7.4, 8.1, 9.1, 9.6, 9.8, 10.0, 9.9, 9.9]}

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 KiB

File diff suppressed because one or more lines are too long

View File

@ -1,12 +0,0 @@
WeightwiseNeuralNetwork activiation='linear' use_bias=False
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [0.2, 0.3, 0.15, 0.55, 0.7, 0.85, 0.8, 0.95, 0.9, 1.0, 1.0]}
AggregatingNeuralNetwork activiation='linear' use_bias=False
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [1.0, 0.95, 1.0, 1.0, 0.95, 0.9, 0.8, 1.0, 0.85, 1.0, 0.9]}
RecurrentNeuralNetwork activiation='linear' use_bias=False
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [0.05, 0.0, 0.05, 0.0, 0.0, 0.1, 0.1, 0.05, 0.1, 0.0, 0.0]}

File diff suppressed because one or more lines are too long

View File

@ -1,8 +0,0 @@
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0], 'zs': [0.0, 0.0, 0.7, 1.9, 3.6, 4.3, 6.0, 6.1, 8.3, 7.7, 8.8]}
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.8, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3], 'zs': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}

File diff suppressed because one or more lines are too long

View File

@ -1,12 +0,0 @@
WeightwiseNeuralNetwork activiation='linear' use_bias=False
{'divergent': 0, 'fix_zero': 0, 'fix_other': 50, 'fix_sec': 0, 'other': 0}
AggregatingNeuralNetwork activiation='linear' use_bias=False
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 50}
RecurrentNeuralNetwork activiation='linear' use_bias=False
{'divergent': 38, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 12}

File diff suppressed because one or more lines are too long

View File

@ -1,30 +0,0 @@
variation 10e-0
avg time to vergence 3.63
avg time as fixpoint 0
variation 10e-1
avg time to vergence 5.02
avg time as fixpoint 0
variation 10e-2
avg time to vergence 6.46
avg time as fixpoint 0
variation 10e-3
avg time to vergence 8.04
avg time as fixpoint 0
variation 10e-4
avg time to vergence 9.61
avg time as fixpoint 0.04
variation 10e-5
avg time to vergence 11.23
avg time as fixpoint 1.38
variation 10e-6
avg time to vergence 12.99
avg time as fixpoint 3.23
variation 10e-7
avg time to vergence 14.58
avg time as fixpoint 4.84
variation 10e-8
avg time to vergence 21.95
avg time as fixpoint 11.91
variation 10e-9
avg time to vergence 26.45
avg time as fixpoint 16.47

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 234 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 KiB

View File

@ -1 +0,0 @@
{'divergent': 0, 'fix_zero': 10, 'fix_other': 0, 'fix_sec': 0, 'other': 0}

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 137 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 155 KiB

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 226 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

View File

@ -1,69 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from experiment import *
from network import *
import keras.backend as K
def generate_counters():
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, net, notable_nets=[]):
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
notable_nets += [net]
elif net.is_fixpoint(2):
counters['fix_sec'] += 1
notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('applying_fixpoint') as exp:
exp.trials = 50
exp.run_count = 100
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_counters = []
all_notable_nets = []
all_names = []
for net_generator_id, net_generator in enumerate(net_generators):
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = ParticleDecorator(net_generator())
net.with_params(epsilon=exp.epsilon)
name = str(net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
for run_id in range(exp.run_count):
loss = net.self_attack()
count(counters, net, notable_nets)
all_counters += [counters]
all_notable_nets += [notable_nets]
all_names += [name]
K.clear_session()
exp.save(all_counters=all_counters)
exp.save(trajectorys=exp.without_particles())
# net types reached in the end
# exp.save(all_notable_nets=all_notable_nets)
exp.save(all_names=all_names) #experiment setups
for exp_id, counter in enumerate(all_counters):
exp.log(all_names[exp_id])
exp.log(all_counters[exp_id])
exp.log('\n')

File diff suppressed because one or more lines are too long

View File

@ -1,4 +0,0 @@
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'zs': [0.0, 1.2, 5.2, 7.4, 8.1, 9.1, 9.6, 9.8, 10.0, 9.9, 9.9]}

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 KiB

File diff suppressed because one or more lines are too long

View File

@ -1,12 +0,0 @@
WeightwiseNeuralNetwork activiation='linear' use_bias=False
{'divergent': 0, 'fix_zero': 0, 'fix_other': 50, 'fix_sec': 0, 'other': 0}
AggregatingNeuralNetwork activiation='linear' use_bias=False
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 50}
RecurrentNeuralNetwork activiation='linear' use_bias=False
{'divergent': 38, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 12}

View File

@ -1 +0,0 @@
{'divergent': 11, 'fix_zero': 9, 'fix_other': 0, 'fix_sec': 0, 'other': 0}

View File

@ -1,69 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from experiment import *
from network import *
import tensorflow.python.keras.backend as K
def generate_counters():
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, net, notable_nets=None):
notable_nets = notable_nets or []
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
notable_nets += [net]
elif net.is_fixpoint(2):
counters['fix_sec'] += 1
notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('fixpoint-density') as exp:
#NOTE: settings could/should stay this way
#FFT doesn't work though
exp.trials = 100000
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']:
net_generators += [lambda activation=activation: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
net_generators += [lambda activation=activation: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
# net_generators += [lambda activation=activation: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
# net_generators += [lambda activation=activation: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=False)]
all_counters = []
all_notable_nets = []
all_names = []
for net_generator_id, net_generator in enumerate(net_generators):
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = net_generator().with_params(epsilon=exp.epsilon)
net = ParticleDecorator(net)
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
count(counters, net, notable_nets)
K.clear_session()
all_counters += [counters]
# all_notable_nets += [notable_nets]
all_names += [name]
exp.save(all_counters=all_counters)
exp.save(all_notable_nets=all_notable_nets)
exp.save(all_names=all_names)
for exp_id, counter in enumerate(all_counters):
exp.log(all_names[exp_id])
exp.log(all_counters[exp_id])
exp.log('\n')
print('Done')

View File

@ -1,92 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from experiment import *
from network import *
from soup import prng
import tensorflow.python.keras.backend as K
from statistics import mean
avg = mean
def generate_fixpoint_weights():
return [
np.array([[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0], [0.0]], dtype=np.float32)
]
def generate_fixpoint_net():
#NOTE: Weightwise only is all we can do right now IMO
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
# I don't know if this work for aggregaeting. We don't actually need it, though.
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='sigmoid')
net.set_weights(generate_fixpoint_weights())
return net
def vary(old_weights, e=1.0):
new_weights = copy.deepcopy(old_weights)
for layer_id, layer in enumerate(new_weights):
for cell_id, cell in enumerate(layer):
for weight_id, weight in enumerate(cell):
if prng() < 0.5:
new_weights[layer_id][cell_id][weight_id] = weight + prng() * e
else:
new_weights[layer_id][cell_id][weight_id] = weight - prng() * e
return new_weights
if __name__ == '__main__':
with Experiment('known-fixpoint-variation') as exp:
exp.depth = 10
exp.trials = 100
exp.max_steps = 100
exp.epsilon = 1e-4
exp.xs = []
exp.ys = []
exp.zs = []
exp.notable_nets = []
current_scale = 1.0
for _ in range(exp.depth):
print('variation scale ' + str(current_scale))
for _ in tqdm(range(exp.trials)):
net = generate_fixpoint_net().with_params(epsilon=exp.epsilon)
net = ParticleDecorator(net)
net.set_weights(vary(net.get_weights(), current_scale))
time_to_something = 0
time_as_fixpoint = 0
still_fixpoint = True
for _ in range(exp.max_steps):
net.self_attack()
if net.is_zero() or net.is_diverged():
break
if net.is_fixpoint():
if still_fixpoint:
time_as_fixpoint += 1
else:
print('remarkable')
exp.notable_nets += [net.get_weights()]
still_fixpoint = True
else:
still_fixpoint = False
time_to_something += 1
exp.xs += [current_scale]
# time steps taken to reach divergence or zero (reaching another fix-point is basically never happening)
exp.ys += [time_to_something]
# time steps still regarded as sthe initial fix-point
exp.zs += [time_as_fixpoint]
K.backend.clear_session()
current_scale /= 10.0
for d in range(exp.depth):
exp.log('variation 10e-' + str(d))
exp.log('avg time to vergence ' + str(avg(exp.ys[d*exp.trials:(d+1) * exp.trials])))
exp.log('avg time as fixpoint ' + str(avg(exp.zs[d*exp.trials:(d+1) * exp.trials])))

View File

@ -1,110 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from typing import Tuple
from experiment import *
from network import *
from soup import *
import tensorflow.python.keras.backend as K
from statistics import mean
avg = mean
def generate_counters():
"""
Initial build of the counter dict, to store counts.
:rtype: dict
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
"""
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, soup, notable_nets=None):
"""
Count the occurences ot the types of weight trajectories.
:param counters: A counter dictionary.
:param soup: A Soup
:param notable_nets: A list to store and save intersting candidates
:rtype Tuple[dict, list]
:return: Both the counter dictionary and the list of interessting nets.
"""
notable_nets = notable_nets or list()
for net in soup.particles:
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
# notable_nets += [net]
# elif net.is_fixpoint(2):
# counters['fix_sec'] += 1
# notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with SoupExperiment('learn-from-soup') as exp:
exp.soup_size = 10
exp.soup_life = 100
exp.trials = 10
exp.learn_from_severity_values = [10 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # ['sigmoid', 'linear', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = []
all_data = []
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
zs = []
notable_nets = []
for learn_from_severity in exp.learn_from_severity_values:
counters = generate_counters()
results = []
for _ in tqdm(range(exp.trials)):
soup = Soup(exp.soup_size, lambda net_generator=net_generator,exp=exp: TrainingNeuralNetworkDecorator(net_generator()).with_params(epsilon=exp.epsilon))
soup.with_params(attacking_rate=-1, learn_from_rate=0.1, train=0, learn_from_severity=learn_from_severity)
soup.seed()
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(soup.particles[0].get_keras_params().get('use_bias'))
for time in range(exp.soup_life):
soup.evolve()
count(counters, soup, notable_nets)
K.clear_session()
xs += [learn_from_severity]
ys += [float(counters['fix_zero']) / float(exp.trials)]
zs += [float(counters['fix_other']) / float(exp.trials)]
all_names += [name]
# xs: learn_from_intensity according to exp.learn_from_intensity_values
# ys: zero-fixpoints after life time
# zs: non-zero-fixpoints after life time
all_data += [{'xs':xs, 'ys':ys, 'zs':zs}]
exp.save(all_names=all_names)
exp.save(all_data=all_data)
exp.save(soup=soup.without_particles())
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')

View File

@ -1,100 +0,0 @@
import sys
import os
from typing import Tuple
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from experiment import *
from network import *
import tensorflow.python.keras.backend as K
def generate_counters():
"""
Initial build of the counter dict, to store counts.
:rtype: dict
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
"""
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, net, notable_nets=None):
"""
Count the occurences ot the types of weight trajectories.
:param counters: A counter dictionary.
:param net: A Neural Network
:param notable_nets: A list to store and save intersting candidates
:rtype Tuple[dict, list]
:return: Both the counter dictionary and the list of interessting nets.
"""
notable_nets = notable_nets or list()
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
notable_nets += [net]
elif net.is_fixpoint(2):
counters['fix_sec'] += 1
notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('mixed-self-fixpoints') as exp:
exp.trials = 20
exp.selfattacks = 4
exp.trains_per_selfattack_values = [50 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: FFTNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = []
all_data = []
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
for trains_per_selfattack in exp.trains_per_selfattack_values:
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = ParticleDecorator(net_generator())
net = TrainingNeuralNetworkDecorator(net).with_params(epsilon=exp.epsilon)
name = str(net.net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
for selfattack_id in range(exp.selfattacks):
net.self_attack()
for train_id in range(trains_per_selfattack):
loss = net.compiled().train(epoch=selfattack_id*trains_per_selfattack+train_id)
if net.is_diverged() or net.is_fixpoint():
break
count(counters, net, notable_nets)
keras.backend.clear_session()
xs += [trains_per_selfattack]
ys += [float(counters['fix_zero'] + counters['fix_other']) / float(exp.trials)]
all_names += [name]
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
# ys: average amount of fixpoints found
all_data += [{'xs': xs, 'ys': ys}]
exp.save(all_names=all_names)
exp.save(all_data=all_data)
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')

View File

@ -1,108 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from typing import Tuple
from experiment import *
from network import *
from soup import *
import tensorflow.python.keras.backend as K
def generate_counters():
"""
Initial build of the counter dict, to store counts.
:rtype: dict
:return: dictionary holding counter for: 'divergent', 'fix_zero', 'fix_sec', 'other'
"""
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, soup, notable_nets=None):
"""
Count the occurences ot the types of weight trajectories.
:param counters: A counter dictionary.
:param soup: A Soup
:param notable_nets: A list to store and save intersting candidates
:rtype Tuple[dict, list]
:return: Both the counter dictionary and the list of interessting nets.
"""
notable_nets = notable_nets or list()
for net in soup.particles:
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
# notable_nets += [net]
# elif net.is_fixpoint(2):
# counters['fix_sec'] += 1
# notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('mixed-soup') as exp:
exp.trials = 10
exp.soup_size = 10
exp.soup_life = 5
exp.trains_per_selfattack_values = [10 * i for i in range(11)]
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # ['linear', 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_names = []
all_data = []
for net_generator_id, net_generator in enumerate(net_generators):
xs = []
ys = []
zs = []
for trains_per_selfattack in exp.trains_per_selfattack_values:
counters = generate_counters()
notable_nets = []
for soup_idx in tqdm(range(exp.trials)):
soup = Soup(exp.soup_size,
lambda net_generator=net_generator, exp=exp: TrainingNeuralNetworkDecorator(
net_generator()).with_params(epsilon=exp.epsilon))
soup.with_params(attacking_rate=0.1, learn_from_rate=-1, train=trains_per_selfattack,
learn_from_severity=-1)
soup.seed()
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(
soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(
soup.particles[0].get_keras_params().get('use_bias'))
for _ in range(exp.soup_life):
soup.evolve()
count(counters, soup, notable_nets)
K.clear_session()
xs += [trains_per_selfattack]
ys += [float(counters['fix_zero']) / float(exp.trials)]
zs += [float(counters['fix_other']) / float(exp.trials)]
all_names += [name]
# xs: how many trains per self-attack from exp.trains_per_selfattack_values
# ys: average amount of zero-fixpoints found
# zs: average amount of non-zero fixpoints
all_data += [{'xs': xs, 'ys': ys, 'zs': zs}]
exp.save(all_names=all_names)
exp.save(all_data=all_data)
for exp_id, name in enumerate(all_names):
exp.log(all_names[exp_id])
exp.log(all_data[exp_id])
exp.log('\n')

View File

@ -1,112 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from soup import *
from experiment import *
if __name__ == '__main__':
def run_exp(net, prints=False):
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
exp.run_net(net, 100, run_id=run_id + 1)
exp.historical_particles[run_id] = net
if prints:
print("Fixpoint? " + str(net.is_fixpoint()))
print("Loss " + str(loss))
if True:
# WeightWise Neural Network
with FixpointExperiment(name="weightwise_self_application") as exp:
for run_id in tqdm(range(20)):
net = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)
.with_keras_params(activation='linear'))
run_exp(net)
K.clear_session()
exp.log(exp.counters)
exp.save(trajectorys=exp.without_particles())
if False:
# Aggregating Neural Network
with FixpointExperiment(name="aggregating_self_application") as exp:
for run_id in tqdm(range(10)):
net = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
.with_keras_params(activation='linear'))
run_exp(net)
K.clear_session()
exp.log(exp.counters)
exp.save(trajectorys=exp.without_particles())
if False:
#FFT Neural Network
with FixpointExperiment() as exp:
for run_id in tqdm(range(10)):
net = ParticleDecorator(FFTNeuralNetwork(aggregates=4, width=2, depth=2)
.with_keras_params(activation='linear'))
run_exp(net)
K.clear_session()
exp.log(exp.counters)
exp.save(trajectorys=exp.without_particles())
if False:
# ok so this works quite realiably
with FixpointExperiment(name="weightwise_learning") as exp:
for i in range(10):
run_count = 100
net = TrainingNeuralNetworkDecorator(ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)))
net.with_params(epsilon=0.0001).with_keras_params(activation='linear')
exp.historical_particles[net.get_uid()] = net
for run_id in tqdm(range(run_count+1)):
net.compiled()
loss = net.train(epoch=run_id)
# run_exp(net)
# net.save_state(time=run_id)
K.clear_session()
exp.save(trajectorys=exp.without_particles())
if False:
# ok so this works quite realiably
with FixpointExperiment(name="aggregating_learning") as exp:
for i in range(10):
run_count = 100
net = TrainingNeuralNetworkDecorator(ParticleDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)))
net.with_params(epsilon=0.0001).with_keras_params(activation='linear')
exp.historical_particles[net.get_uid()] = net
for run_id in tqdm(range(run_count+1)):
net.compiled()
loss = net.train(epoch=run_id)
# run_exp(net)
# net.save_state(time=run_id)
K.clear_session()
exp.save(trajectorys=exp.without_particles())
if False:
# this explodes in our faces completely... NAN everywhere
# TODO: Wtf is happening here?
with FixpointExperiment() as exp:
run_count = 10000
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2))\
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train()
if run_id % 500 == 0:
net.print_weights()
# print(net.apply_to_network(net))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Loss " + str(loss))
print()
if False:
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
# over multiple applications when training enough in-between
with MixedFixpointExperiment() as exp:
for run_id in range(10):
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
.with_params(epsilon=0.0001, activation='sigmoid')
exp.run_net(net, 500, 10)
net.print_weights()
print("Fixpoint? " + str(net.is_fixpoint()))
exp.log(exp.counters)

View File

@ -1,32 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from soup import *
from experiment import *
if __name__ == '__main__':
if True:
with SoupExperiment("soup") as exp:
for run_id in range(1):
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))\
# .with_keras_params(activation='linear')
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
# .with_keras_params(activation='linear')
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup = Soup(20, net_generator).with_params(remove_divergent=True, remove_zero=True,
train=30,
learn_from_rate=-1)
soup.seed()
for _ in tqdm(range(100)):
soup.evolve()
exp.log(soup.count())
# you can access soup.historical_particles[particle_uid].states[time_step]['loss']
# or soup.historical_particles[particle_uid].states[time_step]['weights']
# from soup.dill
exp.save(soup=soup.without_particles())

View File

@ -1,70 +0,0 @@
import sys
import os
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from experiment import *
from network import *
import tensorflow.python.keras.backend as K
def generate_counters():
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, net, notable_nets=None):
notable_nets = notable_nets or list()
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
notable_nets += [net]
elif net.is_fixpoint(2):
counters['fix_sec'] += 1
notable_nets += [net]
else:
counters['other'] += 1
return counters, notable_nets
if __name__ == '__main__':
with Experiment('training_fixpoint') as exp:
exp.trials = 50
exp.run_count = 1000
exp.epsilon = 1e-4
net_generators = []
for activation in ['linear']: # , 'sigmoid', 'relu']:
for use_bias in [False]:
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
all_counters = []
all_notable_nets = []
all_names = []
for net_generator_id, net_generator in enumerate(net_generators):
counters = generate_counters()
notable_nets = []
for _ in tqdm(range(exp.trials)):
net = ParticleDecorator(net_generator())
net = TrainingNeuralNetworkDecorator(net).with_params(epsilon=exp.epsilon)
name = str(net.net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
for run_id in range(exp.run_count):
loss = net.compiled().train(epoch=run_id+1)
count(counters, net, notable_nets)
all_counters += [counters]
all_notable_nets += [notable_nets]
all_names += [name]
K.clear_session()
exp.save(all_counters=all_counters)
exp.save(trajectorys=exp.without_particles())
# net types reached in the end
# exp.save(all_notable_nets=all_notable_nets)
exp.save(all_names=all_names) #experiment setups
for exp_id, counter in enumerate(all_counters):
exp.log(all_names[exp_id])
exp.log(all_counters[exp_id])
exp.log('\n')

View File

@ -1,137 +0,0 @@
import random
from network import *
def prng():
return random.random()
class Soup(object):
def __init__(self, size, generator, **kwargs):
self.size = size
self.generator = generator
self.particles = []
self.historical_particles = {}
self.params = dict(attacking_rate=0.1, learn_from_rate=0.1, train=0, learn_from_severity=1)
self.params.update(kwargs)
self.time = 0
def __copy__(self):
copy_ = Soup(self.size, self.generator, **self.params)
copy_.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
attr not in ['particles', 'historical_particles']}
return copy_
def without_particles(self):
self_copy = copy.copy(self)
# self_copy.particles = [particle.states for particle in self.particles]
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
return self_copy
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def generate_particle(self):
new_particle = ParticleDecorator(self.generator())
self.historical_particles[new_particle.get_uid()] = new_particle
return new_particle
def get_particle(self, uid, otherwise=None):
return self.historical_particles.get(uid, otherwise)
def seed(self):
self.particles = []
for _ in range(self.size):
self.particles += [self.generate_particle()]
return self
def evolve(self, iterations=1):
for _ in range(iterations):
self.time += 1
for particle_id, particle in enumerate(self.particles):
description = {'time': self.time}
if prng() < self.params.get('attacking_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.attack(other_particle)
description['action'] = 'attacking'
description['counterpart'] = other_particle.get_uid()
if prng() < self.params.get('learn_from_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
for _ in range(self.params.get('learn_from_severity', 1)):
particle.learn_from(other_particle)
description['action'] = 'learn_from'
description['counterpart'] = other_particle.get_uid()
for _ in range(self.params.get('train', 0)):
particle.compiled()
# callbacks on save_state are broken for TrainingNeuralNetwork
loss = particle.train(store_states=False)
description['fitted'] = self.params.get('train', 0)
description['loss'] = loss
description['action'] = 'train_self'
description['counterpart'] = None
if self.params.get('remove_divergent') and particle.is_diverged():
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
description['action'] = 'divergent_dead'
description['counterpart'] = new_particle.get_uid()
if self.params.get('remove_zero') and particle.is_zero():
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
description['action'] = 'zweo_dead'
description['counterpart'] = new_particle.get_uid()
particle.save_state(**description)
def count(self):
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
for particle in self.particles:
if particle.is_diverged():
counters['divergent'] += 1
elif particle.is_fixpoint():
if particle.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
elif particle.is_fixpoint(2):
counters['fix_sec'] += 1
else:
counters['other'] += 1
return counters
def print_all(self):
for particle in self.particles:
particle.print_weights()
print(particle.is_fixpoint())
if __name__ == '__main__':
if True:
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup_generator = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
exp = SoupExperiment()
exp.run_exp(net_generator, 1000, soup_generator, 1, False)
# net_generator = lambda: FFTNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
if True:
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
soup_generator = lambda: Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True, train=20)
exp = SoupExperiment(name="soup")
exp.run_exp(net_generator, 100, soup_generator, 1, False)
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))
# .with_keras_params(activation='linear')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
# .with_keras_params(activation='linear')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()

6
experiments/__init__.py Normal file
View File

@ -0,0 +1,6 @@
from .mixed_setting_exp import run_mixed_experiment
from .robustness_exp import run_robustness_experiment
from .self_application_exp import run_SA_experiment
from .self_train_exp import run_ST_experiment
from .soup_exp import run_soup_experiment
import functionalities_test

59
experiments/helpers.py Normal file
View File

@ -0,0 +1,59 @@
""" -------------------------------- Methods for summarizing the experiments --------------------------------- """
from pathlib import Path
from visualization import line_chart_fixpoints, bar_chart_fixpoints
def summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory,
summary_pre_title):
avg_fixpoint_counters = {
"avg_identity_func": 0,
"avg_divergent": 0,
"avg_fix_zero": 0,
"avg_fix_weak": 0,
"avg_fix_sec": 0,
"avg_other_func": 0
}
for i in range(len(experiments)):
fixpoint_counters = experiments[i].fixpoint_counters
avg_fixpoint_counters["avg_identity_func"] += fixpoint_counters["identity_func"]
avg_fixpoint_counters["avg_divergent"] += fixpoint_counters["divergent"]
avg_fixpoint_counters["avg_fix_zero"] += fixpoint_counters["fix_zero"]
avg_fixpoint_counters["avg_fix_weak"] += fixpoint_counters["fix_weak"]
avg_fixpoint_counters["avg_fix_sec"] += fixpoint_counters["fix_sec"]
avg_fixpoint_counters["avg_other_func"] += fixpoint_counters["other_func"]
# Calculating the average for each fixpoint
avg_fixpoint_counters.update((x, y / len(experiments)) for x, y in avg_fixpoint_counters.items())
# Checking where the data is coming from to have a relevant title in the plot.
if summary_pre_title not in ["ST", "SA", "soup", "mixed", "robustness"]:
summary_pre_title = ""
# Plotting the summary
source_checker = "summary"
exp_details = f"{summary_pre_title}: {runs} runs & {epochs} epochs each."
bar_chart_fixpoints(avg_fixpoint_counters, population_size, directory, net_learning_rate, exp_details,
source_checker)
def summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
population_size):
fixpoints_percentages = [round(fixpoints_percentages[i] / runs, 1) for i in range(len(fixpoints_percentages))]
# Plotting summary
if "soup" in directory_name:
line_chart_fixpoints(fixpoints_percentages, epochs / ST_steps, ST_steps, SA_steps, directory_name,
population_size)
else:
line_chart_fixpoints(fixpoints_percentages, epochs, ST_steps, SA_steps, directory_name, population_size)
""" -------------------------------------------- Miscellaneous --------------------------------------------------- """
def check_folder(experiment_folder: str):
exp_path = Path('experiments') / experiment_folder
exp_path.mkdir(parents=True, exist_ok=True)

View File

@ -0,0 +1,271 @@
import pickle
from collections import defaultdict
from pathlib import Path
import sys
import platform
import pandas as pd
import torchmetrics
import numpy as np
import torch
from matplotlib import pyplot as plt
import seaborn as sns
from torch import nn
from torch.nn import Flatten
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Resize
from tqdm import tqdm
if platform.node() == 'CarbonX':
debug = True
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print("@ Warning, Debugging Config@!!!!!! @")
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
else:
debug = False
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(DIR.parent))
__package__ = DIR.name
else:
DIR = None
except NameError:
DIR = None
pass
from network import MetaNet
from functionalities_test import test_for_fixpoints
WORKER = 10 if not debug else 2
BATCHSIZE = 500 if not debug else 50
EPOCH = 100 if not debug else 3
VALIDATION_FRQ = 5 if not debug else 1
SELF_TRAIN_FRQ = 1 if not debug else 1
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if debug:
torch.autograd.set_detect_anomaly(True)
class ToFloat:
def __call__(self, x):
return x.to(torch.float32)
class AddTaskDataset(Dataset):
def __init__(self, length=int(5e5)):
super().__init__()
self.length = length
self.prng = np.random.default_rng()
def __len__(self):
return self.length
def __getitem__(self, _):
ab = self.prng.normal(size=(2,)).astype(np.float32)
return ab, ab.sum(axis=-1, keepdims=True)
def set_checkpoint(model, out_path, epoch_n, final_model=False):
epoch_n = str(epoch_n)
if not final_model:
ckpt_path = Path(out_path) / 'ckpt' / f'{epoch_n.zfill(4)}_model_ckpt.tp'
else:
ckpt_path = Path(out_path) / f'trained_model_ckpt_e{epoch_n}.tp'
ckpt_path.parent.mkdir(exist_ok=True, parents=True)
torch.save(model, ckpt_path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
return ckpt_path
def validate(checkpoint_path, ratio=0.1):
checkpoint_path = Path(checkpoint_path)
import torchmetrics
# initialize metric
validmetric = torchmetrics.Accuracy()
ut = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
try:
datas = MNIST(str(data_path), transform=ut, train=False)
except RuntimeError:
datas = MNIST(str(data_path), transform=ut, train=False, download=True)
valid_d = DataLoader(datas, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
n_samples = int(len(valid_d) * ratio)
with tqdm(total=n_samples, desc='Validation Run: ') as pbar:
for idx, (valid_batch_x, valid_batch_y) in enumerate(valid_d):
valid_batch_x, valid_batch_y = valid_batch_x.to(DEVICE), valid_batch_y.to(DEVICE)
y_valid = model(valid_batch_x)
# metric on current batch
acc = validmetric(y_valid.cpu(), valid_batch_y.cpu())
pbar.set_postfix_str(f'Acc: {acc}')
pbar.update()
if idx == n_samples:
break
# metric on all batches using custom accumulation
acc = validmetric.compute()
tqdm.write(f"Avg. accuracy on all data: {acc}")
return acc
def new_train_storage_df():
return pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
out_path = Path(out_path)
ckpt_path = set_checkpoint(model, out_path, epoch_n, final_model=final_model)
result = validate(ckpt_path)
return result
def plot_training_result(path_to_dataframe):
# load from Drive
df = pd.read_csv(path_to_dataframe, index_col=0)
# Set up figure
fig, ax1 = plt.subplots() # initializes figure and plots
ax2 = ax1.twinx() # applies twinx to ax2, which is the second y-axis.
# plots the first set of data
data = df[(df['Metric'] == 'Task Loss') | (df['Metric'] == 'Self Train Loss')].groupby(['Epoch', 'Metric']).mean()
palette = sns.color_palette()[0:data.reset_index()['Metric'].unique().shape[0]]
sns.lineplot(data=data.groupby(['Epoch', 'Metric']).mean(), x='Epoch', y='Score', hue='Metric',
palette=palette, ax=ax1)
# plots the second set of data
data = df[(df['Metric'] == 'Test Accuracy') | (df['Metric'] == 'Train Accuracy')]
palette = sns.color_palette()[len(palette):data.reset_index()['Metric'].unique().shape[0] + len(palette)]
sns.lineplot(data=data, x='Epoch', y='Score', marker='o', hue='Metric', palette=palette)
ax1.set(yscale='log', ylabel='Losses')
ax1.set_title('Training Lineplot')
ax2.set(ylabel='Accuracy')
fig.legend(loc="center right", title='Metric', bbox_to_anchor=(0.85, 0.5))
ax1.get_legend().remove()
ax2.get_legend().remove()
plt.tight_layout()
if debug:
plt.show()
else:
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
if __name__ == '__main__':
self_train = False
training = False
plotting = False
particle_analysis = True
as_sparse_network_test = True
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
run_path = Path('output') / 'mnist_self_train_100_NEW_STYLE'
model_path = run_path / '0000_trained_model.zip'
df_store_path = run_path / 'train_store.csv'
if training:
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
try:
dataset = MNIST(str(data_path), transform=utility_transforms)
except RuntimeError:
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
interface = np.prod(dataset[0][0].shape)
metanet = MetaNet(interface, depth=4, width=6, out=10).to(DEVICE).train()
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(metanet.parameters(), lr=0.004, momentum=0.9)
train_store = new_train_storage_df()
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
if is_validation_epoch:
metric = torchmetrics.Accuracy()
else:
metric = None
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
if self_train and is_self_train_epoch:
self_train_loss = metanet.combined_self_train(optimizer)
step_log = dict(Epoch=epoch, Batch=batch, Metric='Self Train Loss', Score=self_train_loss.item())
train_store.loc[train_store.shape[0]] = step_log
# Zero your gradients for every batch!
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y = metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y, batch_y.to(torch.long))
loss.backward()
# Adjust learning weights
optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y.cpu(), batch_y.cpu())
if batch >= 3 and debug:
break
if is_validation_epoch:
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
accuracy = checkpoint_and_validate(metanet, run_path, epoch)
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
train_store.loc[train_store.shape[0]] = validation_log
if particle_analysis:
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists())
train_store = new_train_storage_df()
accuracy = checkpoint_and_validate(metanet, run_path, EPOCH, final_model=True)
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
train_store.loc[train_store.shape[0]] = validation_log
train_store.to_csv(df_store_path)
if plotting:
plot_training_result(df_store_path)
if particle_analysis:
model_path = next(run_path.glob('*ckpt.tp'))
latest_model = torch.load(model_path, map_location=DEVICE).eval()
counter_dict = defaultdict(lambda: 0)
_ = test_for_fixpoints(counter_dict, list(latest_model.particles))
tqdm.write(str(dict(counter_dict)))
zero_ident = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('identity_func')
zero_other = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero('other_func')
if as_sparse_network_test:
acc_pre = validate(model_path, ratio=1)
ident_ckpt = set_checkpoint(zero_ident, model_path.parent, -1, final_model=True)
ident_acc_post = validate(ident_ckpt, ratio=1)
tqdm.write(f'Zero_ident diff = {abs(ident_acc_post-acc_pre)}')
other_ckpt = set_checkpoint(zero_other, model_path.parent, -2, final_model=True)
other_acc_post = validate(other_ckpt, ratio=1)
tqdm.write(f'Zero_other diff = {abs(other_acc_post - acc_pre)}')

View File

@ -0,0 +1,177 @@
import os.path
import pickle
from tqdm import tqdm
from experiments.helpers import check_folder, summary_fixpoint_experiment, summary_fixpoint_percentage
from functionalities_test import test_for_fixpoints
from network import Net
from visualization import plot_loss, bar_chart_fixpoints, line_chart_fixpoints
from visualization import plot_3d_self_train
class MixedSettingExperiment:
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, train_nets,
epochs, SA_steps, ST_steps_between_SA, log_step_size, directory_name):
super().__init__()
self.population_size = population_size
self.net_input_size = net_i_size
self.net_hidden_size = net_h_size
self.net_out_size = net_o_size
self.net_learning_rate = learning_rate
self.train_nets = train_nets
self.epochs = epochs
self.SA_steps = SA_steps
self.ST_steps_between_SA = ST_steps_between_SA
self.log_step_size = log_step_size
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
self.loss_history = []
self.fixpoint_counters_history = []
self.directory_name = directory_name
os.mkdir(self.directory_name)
self.nets = []
self.populate_environment()
self.fixpoint_percentage()
self.weights_evolution_3d_experiment()
self.count_fixpoints()
self.visualize_loss()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating mixed experiment %s" % i)
net_name = f"mixed_net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
self.nets.append(net)
loop_epochs = tqdm(range(self.epochs))
for j in loop_epochs:
loop_epochs.set_description("Running mixed experiment %s" % j)
for i in loop_population_size:
net = self.nets[i]
if self.train_nets == "before_SA":
for _ in range(self.ST_steps_between_SA):
net.self_train(1, self.log_step_size, self.net_learning_rate)
net.self_application(self.SA_steps, self.log_step_size)
elif self.train_nets == "after_SA":
net.self_application(self.SA_steps, self.log_step_size)
for _ in range(self.ST_steps_between_SA):
net.self_train(1, self.log_step_size, self.net_learning_rate)
print(
f"\nLast weight matrix (epoch: {j}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
test_for_fixpoints(self.fixpoint_counters, self.nets)
# Rounding the result not to run into other problems later regarding the exact representation of floating number
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters[
"fix_sec"]) / self.population_size, 1)
self.fixpoint_counters_history.append(fixpoints_percentage)
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
if j < self.epochs:
self.reset_fixpoint_counters()
def weights_evolution_3d_experiment(self):
exp_name = f"Mixed {str(len(self.nets))}"
# This batch size is not relevant for mixed settings because during an epoch there are more steps of SA & ST happening
# and only they need the batch size. To not affect the number of epochs shown in the 3D plot, will send
# forward the number "1" for batch size with the variable <irrelevant_batch_size>
irrelevant_batch_size = 1
plot_3d_self_train(self.nets, exp_name, self.directory_name, irrelevant_batch_size, True)
def count_fixpoints(self):
exp_details = f"SA steps: {self.SA_steps}; ST steps: {self.ST_steps_between_SA}"
test_for_fixpoints(self.fixpoint_counters, self.nets)
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
exp_details)
def fixpoint_percentage(self):
line_chart_fixpoints(self.fixpoint_counters_history, self.epochs, self.ST_steps_between_SA,
self.SA_steps, self.directory_name, self.population_size)
def visualize_loss(self):
for i in range(len(self.nets)):
net_loss_history = self.nets[i].loss_history
self.loss_history.append(net_loss_history)
plot_loss(self.loss_history, self.directory_name)
def reset_fixpoint_counters(self):
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
def run_mixed_experiment(population_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, train_nets,
epochs, SA_steps, ST_steps_between_SA, batch_size, name_hash, runs, run_name):
experiments = {}
fixpoints_percentages = []
check_folder("mixed")
# Running the experiments
for i in range(runs):
directory_name = f"experiments/mixed/{run_name}_run_{i}_{str(population_size)}_nets_{SA_steps}_SA_{ST_steps_between_SA}_ST_{str(name_hash)}"
mixed_experiment = MixedSettingExperiment(
population_size,
net_input_size,
net_hidden_size,
net_out_size,
net_learning_rate,
train_nets,
epochs,
SA_steps,
ST_steps_between_SA,
batch_size,
directory_name
)
pickle.dump(mixed_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
experiments[i] = mixed_experiment
# Building history of fixpoint percentages for summary
fixpoint_counters_history = mixed_experiment.fixpoint_counters_history
if not fixpoints_percentages:
fixpoints_percentages = mixed_experiment.fixpoint_counters_history
else:
# Using list comprehension to make the sum of all the percentages
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
range(len(fixpoints_percentages))]
# Building a summary of all the runs
directory_name = f"experiments/mixed/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
os.mkdir(directory_name)
summary_pre_title = "mixed"
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
summary_pre_title)
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps_between_SA, SA_steps, directory_name,
population_size)
if __name__ == '__main__':
raise NotImplementedError('Test this here!!!')

View File

@ -0,0 +1,151 @@
import copy
import os.path
import pickle
import random
from tqdm import tqdm
from experiments.helpers import check_folder, summary_fixpoint_experiment
from functionalities_test import test_for_fixpoints, is_identity_function
from network import Net
from visualization import bar_chart_fixpoints, box_plot, write_file
def add_noise(input_data, epsilon=pow(10, -5)):
output = copy.deepcopy(input_data)
for k in range(len(input_data)):
output[k][0] += random.random() * epsilon
return output
class RobustnessExperiment:
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
ST_steps, directory_name) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.ST_steps = ST_steps
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
self.id_functions = []
self.directory_name = directory_name
os.mkdir(self.directory_name)
self.nets = []
# Create population:
self.populate_environment()
print("Nets:\n", self.nets)
self.count_fixpoints()
[print(net.is_fixpoint) for net in self.nets]
self.test_robustness()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating robustness experiment %s" % i)
net_name = f"net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
self.nets.append(net)
def test_robustness(self):
# test_for_fixpoints(self.fixpoint_counters, self.nets, self.id_functions)
zero_epsilon = pow(10, -5)
data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
for i in range(len(self.id_functions)):
for j in range(10):
original_net = self.id_functions[i]
# Creating a clone of the network. Not by copying it, but by creating a completely new network
# and changing its weights to the original ones.
original_net_clone = Net(original_net.input_size, original_net.hidden_size, original_net.out_size,
original_net.name)
# Extra safety for the value of the weights
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
noisy_weights = add_noise(original_net_clone.input_weight_matrix(), epsilon=pow(10, -j))
original_net_clone.apply_weights(noisy_weights)
# Testing if the new net is still an identity function after applying noise
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
# If the net is still an id. func. after applying the first run of noise, continue to apply it until otherwise
while still_id_func and data[i][j] <= 1000:
data[i][j] += 1
original_net_clone = original_net_clone.self_application(1, self.log_step_size)
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
print(f"Data {data}")
if data.count(0) == 10:
print(f"There is no network resisting the robustness test.")
text = f"For this population of \n {self.population_size} networks \n there is no" \
f" network resisting the robustness test."
write_file(text, self.directory_name)
else:
box_plot(data, self.directory_name, self.population_size)
def count_fixpoints(self):
exp_details = f"ST steps: {self.ST_steps}"
self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
exp_details)
def run_robustness_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
net_learning_rate, epochs, runs, run_name, name_hash):
experiments = {}
check_folder("robustness")
# Running the experiments
for i in range(runs):
ST_directory_name = f"experiments/robustness/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
robustness_experiment = RobustnessExperiment(
population_size,
batch_size,
net_input_size,
net_hidden_size,
net_out_size,
net_learning_rate,
epochs,
ST_directory_name
)
pickle.dump(robustness_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
experiments[i] = robustness_experiment
# Building a summary of all the runs
directory_name = f"experiments/robustness/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
os.mkdir(directory_name)
summary_pre_title = "robustness"
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
summary_pre_title)
if __name__ == '__main__':
raise NotImplementedError('Test this here!!!')

View File

@ -0,0 +1,120 @@
import os.path
import pickle
from tqdm import tqdm
from experiments.helpers import check_folder, summary_fixpoint_experiment
from functionalities_test import test_for_fixpoints
from network import Net
from visualization import bar_chart_fixpoints
from visualization import plot_3d_self_application
class SelfApplicationExperiment:
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size,
net_learning_rate, application_steps, train_nets, directory_name, training_steps
) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.SA_steps = application_steps #
self.train_nets = train_nets
self.ST_steps = training_steps
self.directory_name = directory_name
os.mkdir(self.directory_name)
""" Creating the nets & making the SA steps & (maybe) also training the networks. """
self.nets = []
# Create population:
self.populate_environment()
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
self.weights_evolution_3d_experiment()
self.count_fixpoints()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating SA experiment %s" % i)
net_name = f"SA_net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name
)
for _ in range(self.SA_steps):
input_data = net.input_weight_matrix()
target_data = net.create_target_weights(input_data)
if self.train_nets == "before_SA":
net.self_train(1, self.log_step_size, self.net_learning_rate)
net.self_application(self.SA_steps, self.log_step_size)
elif self.train_nets == "after_SA":
net.self_application(self.SA_steps, self.log_step_size)
net.self_train(1, self.log_step_size, self.net_learning_rate)
else:
net.self_application(self.SA_steps, self.log_step_size)
self.nets.append(net)
def weights_evolution_3d_experiment(self):
exp_name = f"SA_{str(len(self.nets))}_nets_3d_weights_PCA"
plot_3d_self_application(self.nets, exp_name, self.directory_name, self.log_step_size)
def count_fixpoints(self):
test_for_fixpoints(self.fixpoint_counters, self.nets)
exp_details = f"{self.SA_steps} SA steps"
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
exp_details)
def run_SA_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
net_learning_rate, runs, run_name, name_hash, application_steps, train_nets, training_steps):
experiments = {}
check_folder("self_application")
# Running the experiments
for i in range(runs):
directory_name = f"experiments/self_application/{run_name}_run_{i}_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
SA_experiment = SelfApplicationExperiment(
population_size,
batch_size,
net_input_size,
net_hidden_size,
net_out_size,
net_learning_rate,
application_steps,
train_nets,
directory_name,
training_steps
)
pickle.dump(SA_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
experiments[i] = SA_experiment
# Building a summary of all the runs
directory_name = f"experiments/self_application/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
os.mkdir(directory_name)
summary_pre_title = "SA"
summary_fixpoint_experiment(runs, population_size, application_steps, experiments, net_learning_rate,
directory_name,
summary_pre_title)
if __name__ == '__main__':
raise NotImplementedError('Test this here!!!')

View File

@ -0,0 +1,116 @@
import os.path
import pickle
from pathlib import Path
from tqdm import tqdm
from experiments.helpers import check_folder, summary_fixpoint_experiment
from functionalities_test import test_for_fixpoints
from network import Net
from visualization import plot_loss, bar_chart_fixpoints
from visualization import plot_3d_self_train
class SelfTrainExperiment:
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, directory_name) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.epochs = epochs
self.loss_history = []
self.fixpoint_counters = {
"identity_func": 0,
"divergent": 0,
"fix_zero": 0,
"fix_weak": 0,
"fix_sec": 0,
"other_func": 0
}
self.directory_name = directory_name
os.mkdir(self.directory_name)
self.nets = []
# Create population:
self.populate_environment()
self.weights_evolution_3d_experiment()
self.count_fixpoints()
self.visualize_loss()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating ST experiment %s" % i)
net_name = f"ST_net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
for _ in range(self.epochs):
net.self_train(1, self.log_step_size, self.net_learning_rate)
print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
self.nets.append(net)
def weights_evolution_3d_experiment(self):
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
def count_fixpoints(self):
test_for_fixpoints(self.fixpoint_counters, self.nets)
exp_details = f"Self-train for {self.epochs} epochs"
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
exp_details)
def visualize_loss(self):
for i in range(len(self.nets)):
net_loss_history = self.nets[i].loss_history
self.loss_history.append(net_loss_history)
plot_loss(self.loss_history, self.directory_name)
def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, runs, run_name, name_hash):
experiments = {}
logging_directory = Path('output') / 'self_training'
logging_directory.mkdir(parents=True, exist_ok=True)
# Running the experiments
for i in range(runs):
experiment_name = f"{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
this_exp_directory = logging_directory / experiment_name
ST_experiment = SelfTrainExperiment(
population_size,
batch_size,
net_input_size,
net_hidden_size,
net_out_size,
net_learning_rate,
epochs,
this_exp_directory
)
with (this_exp_directory / 'full_experiment_pickle.p').open('wb') as f:
pickle.dump(ST_experiment, f)
experiments[i] = ST_experiment
# Building a summary of all the runs
summary_name = f"/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
summary_directory_name = logging_directory / summary_name
summary_directory_name.mkdir(parents=True, exist_ok=True)
summary_pre_title = "ST"
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, summary_directory_name,
summary_pre_title)
if __name__ == '__main__':
raise NotImplementedError('Test this here!!!')

Some files were not shown because too many files have changed in this diff Show More