Journal TEx Text
This commit is contained in:
parent
6c1a964f31
commit
5f6c658068
@ -30,11 +30,10 @@
|
||||
|
||||
- [x] Box-Plot of Avg. Distance of clones from parent
|
||||
|
||||
- [ ] Search subspace between two fixpoints by linage(10**-5), check were they end up
|
||||
- [x] Search subspace between two fixpoints by linage(10**-5), check were they end up
|
||||
|
||||
- [x] How are basins / "attractor areas" shaped?
|
||||
|
||||
- [ ] How are basins / "attractor areas" shaped?
|
||||
- Weired.... tbc...
|
||||
-
|
||||
|
||||
# Future Todos:
|
||||
|
||||
|
@ -63,6 +63,23 @@ class SoupExperiment:
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
self.population.append(net)
|
||||
|
||||
def population_self_train(self):
|
||||
# Self-training each network in the population
|
||||
for j in range(self.population_size):
|
||||
net = self.population[j]
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
def population_attack(self):
|
||||
# A network attacking another network with a given percentage
|
||||
if random.randint(1, 100) <= self.attack_chance:
|
||||
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
||||
random_net1 = self.population[random_net1]
|
||||
random_net2 = self.population[random_net2]
|
||||
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
|
||||
random_net1.attack(random_net2)
|
||||
|
||||
def evolve(self):
|
||||
""" Evolving consists of attacking & self-training. """
|
||||
|
||||
@ -71,19 +88,10 @@ class SoupExperiment:
|
||||
loop_epochs.set_description("Evolving soup %s" % i)
|
||||
|
||||
# A network attacking another network with a given percentage
|
||||
if random.randint(1, 100) <= self.attack_chance:
|
||||
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
||||
random_net1 = self.population[random_net1]
|
||||
random_net2 = self.population[random_net2]
|
||||
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
|
||||
random_net1.attack(random_net2)
|
||||
self.population_attack()
|
||||
|
||||
# Self-training each network in the population
|
||||
for j in range(self.population_size):
|
||||
net = self.population[j]
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
self.population_self_train()
|
||||
|
||||
# Testing for fixpoints after each batch of ST steps to see relevant data
|
||||
if i % self.ST_steps == 0:
|
||||
|
50
experiments/soup_melt_exp.py
Normal file
50
experiments/soup_melt_exp.py
Normal file
@ -0,0 +1,50 @@
|
||||
import random
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.soup_exp import SoupExperiment
|
||||
from functionalities_test import test_for_fixpoints
|
||||
|
||||
|
||||
class MeltingSoupExperiment(SoupExperiment):
|
||||
|
||||
def __init__(self, melt_chance, *args, keep_population_size=True, **kwargs):
|
||||
super(MeltingSoupExperiment, self).__init__(*args, **kwargs)
|
||||
self.keep_population_size = keep_population_size
|
||||
self.melt_chance = melt_chance
|
||||
|
||||
def population_melt(self):
|
||||
# A network melting with another network by a given percentage
|
||||
if random.randint(1, 100) <= self.melt_chance:
|
||||
random_net1_idx, random_net2_idx, destroy_idx = random.sample(range(self.population_size), 3)
|
||||
random_net1 = self.population[random_net1_idx]
|
||||
random_net2 = self.population[random_net2_idx]
|
||||
print(f"\n Melt: {random_net1.name} -> {random_net2.name}")
|
||||
melted_network = random_net1.melt(random_net2)
|
||||
if self.keep_population_size:
|
||||
del self.population[destroy_idx]
|
||||
self.population.append(melted_network)
|
||||
|
||||
def evolve(self):
|
||||
""" Evolving consists of attacking, melting & self-training. """
|
||||
|
||||
loop_epochs = tqdm(range(self.epochs))
|
||||
for i in loop_epochs:
|
||||
loop_epochs.set_description("Evolving soup %s" % i)
|
||||
|
||||
self.population_attack()
|
||||
|
||||
self.population_melt()
|
||||
|
||||
self.population_self_train()
|
||||
|
||||
# Testing for fixpoints after each batch of ST steps to see relevant data
|
||||
if i % self.ST_steps == 0:
|
||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||
fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1)
|
||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||
|
||||
# Resetting the fixpoint counter. Last iteration not to be reset -
|
||||
# it is important for the bar_chart_fixpoints().
|
||||
if i < self.epochs:
|
||||
self.reset_fixpoint_counters()
|
@ -262,7 +262,7 @@ if __name__ == "__main__":
|
||||
# Countplot of all fixpoint clone after training per class. Uncomment and manually adjust xticklabels if x-ax size gets too small.
|
||||
ax = sns.catplot(kind="count", data=df, x="noise", hue="class", height=5.27, aspect=11.7/5.27)
|
||||
ax.set_axis_labels("Noise Levels", "Clone Fixpoints After Training Count ", fontsize=15)
|
||||
#ax.set_xticklabels(labels=('10e-10', '10e-9', '10e-8', '10e-7', '10e-6', '10e-5', '10e-4', '10e-3', '10e-2', '10e-1'), fontsize=15)
|
||||
ax.set_xticklabels(labels=('10e-10', '10e-9', '10e-8', '10e-7', '10e-6', '10e-5', '10e-4', '10e-3', '10e-2', '10e-1'), fontsize=15)
|
||||
plt.savefig(f"{directory}/clone_status_after_countplot_{ST_name_hash}.png")
|
||||
plt.clf()
|
||||
|
||||
@ -274,5 +274,6 @@ if __name__ == "__main__":
|
||||
ax.map(sns.boxplot, "State", "Distance", "noise", linewidth=0.8, order=["MAE_pre", "MAE_post"], whis=[0, 100])
|
||||
ax.set_axis_labels("", "Manhattan Distance To Parent Weights", fontsize=15)
|
||||
ax.set_xticklabels(labels=('after noise application', 'after training'), fontsize=15)
|
||||
plt.ticklabel_format(style='sci', axis='x')
|
||||
plt.savefig(f"{directory}/before_after_distance_catplot_{ST_name_hash}.png")
|
||||
plt.clf()
|
||||
|
@ -6,6 +6,8 @@ import random
|
||||
import copy
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from matplotlib.ticker import ScalarFormatter
|
||||
from tqdm import tqdm
|
||||
from tabulate import tabulate
|
||||
|
||||
@ -125,7 +127,7 @@ class RobustnessComparisonExperiment:
|
||||
# or multi network settings with a singlee seed
|
||||
|
||||
df = pd.DataFrame(columns=['setting', 'Noise Level', 'Self Train Steps', 'absolute_loss',
|
||||
'Time to vergence', 'Time as fixpoint'])
|
||||
'Time to convergence', 'Time as fixpoint'])
|
||||
with tqdm(total=max(len(self.id_functions), seeds)) as pbar:
|
||||
for i, fixpoint in enumerate(self.id_functions): # 1 / n
|
||||
row_headers.append(fixpoint.name)
|
||||
@ -157,7 +159,7 @@ class RobustnessComparisonExperiment:
|
||||
# When this raises a Type Error, we found a second order fixpoint!
|
||||
steps += 1
|
||||
|
||||
df.loc[df.shape[0]] = [setting, f'10e-{noise_level}', steps, absolute_loss,
|
||||
df.loc[df.shape[0]] = [setting, f'$10^{{-{noise_level}}}$', steps, absolute_loss,
|
||||
time_to_vergence[setting][noise_level],
|
||||
time_as_fixpoint[setting][noise_level]]
|
||||
pbar.update(1)
|
||||
@ -165,14 +167,19 @@ class RobustnessComparisonExperiment:
|
||||
# Get the measuremts at the highest time_time_to_vergence
|
||||
df_sorted = df.sort_values('Self Train Steps', ascending=False).drop_duplicates(['setting', 'Noise Level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'Noise Level', 'Self Train Steps'],
|
||||
value_vars=['Time to vergence', 'Time as fixpoint'],
|
||||
value_vars=['Time to convergence', 'Time as fixpoint'],
|
||||
var_name="Measurement",
|
||||
value_name="Steps").sort_values('Noise Level')
|
||||
# Plotting
|
||||
plt.rcParams.update({
|
||||
"text.usetex": True,
|
||||
"font.family": "sans-serif",
|
||||
"font.size": 12,
|
||||
"font.weight": 'bold',
|
||||
"font.sans-serif": ["Helvetica"]})
|
||||
sns.set(style='whitegrid', font_scale=2)
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='Noise Level', hue='Measurement', palette=PALETTE)
|
||||
synthetic = 'synthetic' if self.is_synthetic else 'natural'
|
||||
# bf.set_title(f'Robustness as self application steps per noise level for {synthetic} fixpoints.')
|
||||
plt.tight_layout()
|
||||
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
@ -206,7 +213,6 @@ class RobustnessComparisonExperiment:
|
||||
plot_loss(self.loss_history, self.directory)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NET_INPUT_SIZE = 4
|
||||
NET_OUT_SIZE = 1
|
||||
@ -214,12 +220,11 @@ if __name__ == "__main__":
|
||||
ST_steps = 1000
|
||||
ST_epochs = 5
|
||||
ST_log_step_size = 10
|
||||
ST_population_size = 500
|
||||
ST_population_size = 1000
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.004
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
ST_synthetic = True
|
||||
|
||||
ST_synthetic = False
|
||||
|
||||
print(f"Running the robustness comparison experiment:")
|
||||
exp = RobustnessComparisonExperiment(
|
||||
|
@ -7,6 +7,7 @@ from typing import Union
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
from matplotlib.ticker import ScalarFormatter
|
||||
from tqdm import tqdm
|
||||
from matplotlib import pyplot as plt
|
||||
from torch.nn import functional as F
|
||||
@ -158,8 +159,10 @@ class SoupRobustnessExperiment:
|
||||
df = df.replace([np.inf, -np.inf], np.nan)
|
||||
df = df.dropna()
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
sns.set_theme(style="ticks")
|
||||
bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box',
|
||||
col='noise_level', col_wrap=3, showfliers=False)
|
||||
|
||||
directory = Path('output') / 'robustness'
|
||||
filename = f"absolute_loss_perapplication_boxplot_grid.png"
|
||||
filepath = directory / filename
|
||||
@ -167,7 +170,7 @@ class SoupRobustnessExperiment:
|
||||
plt.savefig(str(filepath))
|
||||
|
||||
if print_it:
|
||||
col_headers = [str(f"10e-{d}") for d in range(noise_levels)]
|
||||
col_headers = [str(f"10-{d}") for d in range(noise_levels)]
|
||||
|
||||
print(f"\nAppplications steps until divergence / zero: ")
|
||||
print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
@ -221,7 +224,7 @@ if __name__ == "__main__":
|
||||
# soup_SA_steps = 10
|
||||
|
||||
# Define number of networks & their architecture
|
||||
soup_population_size = 20
|
||||
soup_population_size = 4
|
||||
soup_net_hidden_size = 2
|
||||
soup_net_learning_rate = 0.04
|
||||
|
||||
|
21
network.py
21
network.py
@ -1,5 +1,6 @@
|
||||
# from __future__ import annotations
|
||||
import copy
|
||||
import inspect
|
||||
import random
|
||||
from typing import Union
|
||||
|
||||
@ -167,18 +168,30 @@ class Net(nn.Module):
|
||||
""" See after how many steps of SA is the output not changing anymore: """
|
||||
# print(f"Self-app. step {i+1}: {Experiment.changing_rate(output2, output)}")
|
||||
|
||||
self = self.apply_weights(output)
|
||||
_ = self.apply_weights(output)
|
||||
|
||||
return self
|
||||
|
||||
def attack(self, other_net):
|
||||
other_net_weights = other_net.input_weight_matrix()
|
||||
my_evaluation = self(other_net_weights)
|
||||
|
||||
SA_steps = 1
|
||||
|
||||
return other_net.apply_weights(my_evaluation)
|
||||
|
||||
def melt(self, other_net):
|
||||
try:
|
||||
melted_name = self.name + other_net.name
|
||||
except AttributeError:
|
||||
melted_name = None
|
||||
melted_weights = self.create_target_weights(other_net.input_weight_matrix())
|
||||
self_weights = self.create_target_weights(self.input_weight_matrix())
|
||||
weight_indxs = list(range(len(self_weights)))
|
||||
random.shuffle(weight_indxs)
|
||||
for weight_idx in weight_indxs[:len(melted_weights) // 2]:
|
||||
melted_weights[weight_idx] = self_weights[weight_idx]
|
||||
melted_net = Net(i_size=self.input_size, h_size=self.hidden_size, o_size=self.out_size, name=melted_name)
|
||||
melted_net.apply_weights(melted_weights)
|
||||
return melted_net
|
||||
|
||||
def apply_noise(self, noise_size: float):
|
||||
""" Changing the weights of a network to values + noise """
|
||||
for layer_id, layer_name in enumerate(self.state_dict()):
|
||||
|
Loading…
x
Reference in New Issue
Block a user