journal_robustness.py redone, now is sensitive to seeds and plots
This commit is contained in:
parent
55bdd706b6
commit
5e5511caf8
@ -9,10 +9,7 @@ import numpy as np
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from tabulate import tabulate
|
||||
from sklearn.metrics import mean_absolute_error as MAE
|
||||
from sklearn.metrics import mean_squared_error as MSE
|
||||
|
||||
from journal_basins import mean_invariate_manhattan_distance as MIM
|
||||
from functionalities_test import is_identity_function, is_zero_fixpoint, test_for_fixpoints, is_divergent
|
||||
from network import Net
|
||||
from torch.nn import functional as F
|
||||
@ -153,7 +150,11 @@ class RobustnessComparisonExperiment:
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box',
|
||||
col='noise_level', col_wrap=3, showfliers=False)
|
||||
plt.show()
|
||||
directory = Path('output') / 'robustness'
|
||||
filename = f"absolute_loss_perapplication_boxplot_grid.png"
|
||||
filepath = directory / filename
|
||||
|
||||
plt.savefig(str(filepath))
|
||||
|
||||
if print_it:
|
||||
col_headers = [str(f"10e-{d}") for d in range(noise_levels)]
|
||||
|
@ -131,10 +131,10 @@ def plot_3d(matrices_weights_history, directory: Union[str, Path], population_si
|
||||
for j in range(start_log_time, len(weight_matrix_pca)):
|
||||
xdata.append(weight_matrix_pca[j][0])
|
||||
ydata.append(weight_matrix_pca[j][1])
|
||||
zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size).tolist()
|
||||
zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size)
|
||||
|
||||
ax.plot3D(xdata, ydata, zdata, label=f"net {i}")
|
||||
ax.scatter(np.array(xdata), np.array(ydata), np.array(zdata), s=7)
|
||||
ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=7)
|
||||
|
||||
steps = mpatches.Patch(color="white", label=f"{z_axis_legend}: {len(matrices_weights_history)} steps")
|
||||
population_size = mpatches.Patch(color="white", label=f"Population: {population_size} networks")
|
||||
@ -181,7 +181,8 @@ def plot_3d_self_train(nets_array: List, exp_name: str, directory: Union[str, Pa
|
||||
|
||||
z_axis_legend = "epochs"
|
||||
|
||||
return plot_3d(matrices_weights_history, directory, len(nets_array), z_axis_legend, exp_name, "", batch_size, plot_pca_together=plot_pca_together)
|
||||
return plot_3d(matrices_weights_history, directory, len(nets_array), z_axis_legend, exp_name, "", batch_size,
|
||||
plot_pca_together=plot_pca_together)
|
||||
|
||||
|
||||
def plot_3d_self_application(nets_array: List, exp_name: str, directory_name: Union[str, Path], batch_size: int) -> None:
|
||||
@ -212,7 +213,7 @@ def plot_3d_soup(nets_list, exp_name, directory: Union[str, Path]):
|
||||
# will send forward the number "1" for batch size with the variable <irrelevant_batch_size>.
|
||||
irrelevant_batch_size = 1
|
||||
|
||||
plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size)
|
||||
plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False)
|
||||
|
||||
|
||||
def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int,
|
||||
|
Loading…
x
Reference in New Issue
Block a user