Merge branch 'journal' of gitlab.lrz.de:mobile-ifi/bannana-networks into journal
This commit is contained in:
		
							
								
								
									
										12
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								README.md
									
									
									
									
									
								
							| @@ -1,6 +1,11 @@ | ||||
| # self-rep NN paper - ALIFE journal edition | ||||
|  | ||||
| - [x] Plateau / Pillar sizeWhat does happen to the fixpoints after noise introduction and retraining?Options beeing: Same Fixpoint, Similar Fixpoint (Basin), Different Fixpoint? Do they do the clustering thingy? | ||||
| - [x] Plateau / Pillar sizeWhat does happen to the fixpoints after noise introduction and retraining?Options beeing: Same Fixpoint, Similar Fixpoint (Basin),  | ||||
|     - Different Fixpoint? | ||||
|       Yes, we did not found same (10-5) | ||||
|     - Do they do the clustering thingy? | ||||
|       Kind of: Small movement towards (MIM-Distance getting smaller) parent fixpoint. | ||||
|       Small movement for everyone? -> Distribution | ||||
|  | ||||
|     - see `journal_basins.py` for the "train -> spawn with noise -> train again and see where they end up" functionality. Apply noise follows the `vary` function that was used in the paper robustness test with `+- prng() * eps`. Change if desired. | ||||
|  | ||||
| @@ -9,6 +14,9 @@ | ||||
|  | ||||
| - [ ] Same Thing with Soup interactionWe would expect the same behaviour...Influence of interaction with near and far away particles. | ||||
|  | ||||
| - [ ] How are basins / "attractor areas" shaped? | ||||
|       - Weired.... tbc... | ||||
|  | ||||
| - [x] Robustness test with a trained NetworkTraining for high quality fixpoints, compare with the "perfect" fixpoint. Average Loss per application step | ||||
|      | ||||
|     - see `journal_robustness.py` for robustness test modeled after cristians robustness-exp (with the exeption that we put noise on the weights). Has `synthetic` bool to switch to hand-modeled perfect fixpoint instead of naturally trained ones.  | ||||
| @@ -19,7 +27,7 @@ | ||||
|  | ||||
| - [ ] Adjust Self Training so that it favors second order fixpoints-> Second order test implementation (?) | ||||
|  | ||||
| - [ ] Barplot over clones -> how many become a fixpoint cs how many diverge per noise level | ||||
| - [x] Barplot over clones -> how many become a fixpoint cs how many diverge per noise level | ||||
|  | ||||
| - [ ] Box-Plot of Avg. Distance of clones from parent | ||||
|  | ||||
|   | ||||
| @@ -55,8 +55,6 @@ class SelfTrainExperiment: | ||||
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||
|  | ||||
|             for _ in range(self.epochs): | ||||
|               input_data = net.input_weight_matrix() | ||||
|               target_data = net.create_target_weights(input_data) | ||||
|               net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|             print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}") | ||||
| @@ -113,5 +111,6 @@ def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_si | ||||
|     summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, summary_directory_name, | ||||
|                                 summary_pre_title) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     raise NotImplementedError('Test this here!!!') | ||||
|   | ||||
| @@ -4,7 +4,6 @@ import pandas as pd | ||||
| import torch | ||||
| import random | ||||
| import copy | ||||
| import numpy as np | ||||
|  | ||||
| from pathlib import Path | ||||
| from tqdm import tqdm | ||||
| @@ -21,6 +20,7 @@ from matplotlib import pyplot as plt | ||||
| def prng(): | ||||
|     return random.random() | ||||
|  | ||||
|  | ||||
| def generate_perfekt_synthetic_fixpoint_weights(): | ||||
|     return torch.tensor([[1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], | ||||
|                          [1.0], [0.0], [0.0], [0.0], | ||||
| @@ -28,15 +28,32 @@ def generate_perfekt_synthetic_fixpoint_weights(): | ||||
|                          ], dtype=torch.float32) | ||||
|  | ||||
|  | ||||
| PALETTE = 10 * ( | ||||
|     "#377eb8", | ||||
|     "#4daf4a", | ||||
|     "#984ea3", | ||||
|     "#e41a1c", | ||||
|     "#ff7f00", | ||||
|     "#a65628", | ||||
|     "#f781bf", | ||||
|     "#888888", | ||||
|     "#a6cee3", | ||||
|     "#b2df8a", | ||||
|     "#cab2d6", | ||||
|     "#fb9a99", | ||||
|     "#fdbf6f", | ||||
| ) | ||||
|  | ||||
|  | ||||
| class RobustnessComparisonExperiment: | ||||
|  | ||||
|     @staticmethod | ||||
|     def apply_noise(network, noise: int): | ||||
|         """ Changing the weights of a network to values + noise """ | ||||
|         # Changing the weights of a network to values + noise | ||||
|         for layer_id, layer_name in enumerate(network.state_dict()): | ||||
|             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||
|                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||
|                     #network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     if prng() < 0.5: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     else: | ||||
| @@ -55,7 +72,7 @@ class RobustnessComparisonExperiment: | ||||
|         self.epochs = epochs | ||||
|         self.ST_steps = st_steps | ||||
|         self.loss_history = [] | ||||
|         self.synthetic = synthetic | ||||
|         self.is_synthetic = synthetic | ||||
|         self.fixpoint_counters = { | ||||
|             "identity_func": 0, | ||||
|             "divergent": 0, | ||||
| @@ -71,14 +88,14 @@ class RobustnessComparisonExperiment: | ||||
|         self.id_functions = [] | ||||
|         self.nets = self.populate_environment() | ||||
|         self.count_fixpoints() | ||||
|         self.time_to_vergence, self.time_as_fixpoint = self.test_robustness() | ||||
|         self.time_to_vergence, self.time_as_fixpoint = self.test_robustness( | ||||
|             seeds=population_size if self.is_synthetic else 1) | ||||
|  | ||||
|         self.save() | ||||
|  | ||||
|     def populate_environment(self): | ||||
|         loop_population_size = tqdm(range(self.population_size)) | ||||
|         nets = [] | ||||
|         if self.synthetic: | ||||
|         if self.is_synthetic: | ||||
|             ''' Either use perfect / hand-constructed fixpoint ... ''' | ||||
|             net_name = f"net_{str(0)}_synthetic" | ||||
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||
| @@ -86,6 +103,7 @@ class RobustnessComparisonExperiment: | ||||
|             nets.append(net) | ||||
|  | ||||
|         else: | ||||
|             loop_population_size = tqdm(range(self.population_size)) | ||||
|             for i in loop_population_size: | ||||
|                 loop_population_size.set_description("Populating experiment %s" % i) | ||||
|  | ||||
| @@ -95,62 +113,75 @@ class RobustnessComparisonExperiment: | ||||
|                 for _ in range(self.epochs): | ||||
|                     net.self_train(self.ST_steps, self.log_step_size, self.net_learning_rate) | ||||
|                 nets.append(net) | ||||
|  | ||||
|         return nets | ||||
|  | ||||
|     def test_robustness(self, print_it=True, noise_levels=10, seeds=10): | ||||
|         assert (len(self.id_functions) == 1 and seeds > 1) or (len(self.id_functions) > 1 and seeds == 1) | ||||
|         is_synthetic = True if len(self.id_functions) > 1 and seeds == 1 else False | ||||
|         avg_time_to_vergence = [[0 for _ in range(noise_levels)] for _ in | ||||
|                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||
|         avg_time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in | ||||
|                                 range(seeds if is_synthetic else len(self.id_functions))] | ||||
|         time_to_vergence = [[0 for _ in range(noise_levels)] for _ in | ||||
|                             range(seeds if self.is_synthetic else len(self.id_functions))] | ||||
|         time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in | ||||
|                             range(seeds if self.is_synthetic else len(self.id_functions))] | ||||
|         row_headers = [] | ||||
|         data_pos = 0 | ||||
|  | ||||
|         # This checks wether to use synthetic setting with multiple seeds | ||||
|         #   or multi network settings with a singlee seed | ||||
|  | ||||
|         df = pd.DataFrame(columns=['seed', 'noise_level', 'application_step', 'absolute_loss']) | ||||
|         for i, fixpoint in enumerate(self.id_functions): #1 / n | ||||
|             row_headers.append(fixpoint.name) | ||||
|             for seed in range(seeds): #n / 1 | ||||
|                 for noise_level in range(noise_levels): | ||||
|                     self_application_steps = 1 | ||||
|                     clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size, | ||||
|                                 f"{fixpoint.name}_clone_noise10e-{noise_level}") | ||||
|                     clone.load_state_dict(copy.deepcopy(fixpoint.state_dict())) | ||||
|                     rand_noise = prng() * pow(10, -noise_level) #n / 1 | ||||
|                     clone = self.apply_noise(clone, rand_noise) | ||||
|         df = pd.DataFrame(columns=['setting', 'noise_level', 'steps', 'absolute_loss', 'time_to_vergence', 'time_as_fixpoint']) | ||||
|         with tqdm(total=max(len(self.id_functions), seeds)) as pbar: | ||||
|             for i, fixpoint in enumerate(self.id_functions):  # 1 / n | ||||
|                 row_headers.append(fixpoint.name) | ||||
|                 for seed in range(seeds):  # n / 1 | ||||
|                     setting = seed if self.is_synthetic else i | ||||
|  | ||||
|                     while not is_zero_fixpoint(clone) and not is_divergent(clone): | ||||
|                         if is_identity_function(clone): | ||||
|                             avg_time_as_fixpoint[i][noise_level] += 1 | ||||
|                     for noise_level in range(noise_levels): | ||||
|                         steps = 0 | ||||
|                         clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size, | ||||
|                                     f"{fixpoint.name}_clone_noise10e-{noise_level}") | ||||
|                         clone.load_state_dict(copy.deepcopy(fixpoint.state_dict())) | ||||
|                         rand_noise = prng() * pow(10, -noise_level)  # n / 1 | ||||
|                         clone = self.apply_noise(clone, rand_noise) | ||||
|  | ||||
|                         # -> before | ||||
|                         clone_weight_pre_application = clone.input_weight_matrix() | ||||
|                         target_data_pre_application = clone.create_target_weights(clone_weight_pre_application) | ||||
|                         while not is_zero_fixpoint(clone) and not is_divergent(clone): | ||||
|                             # -> before | ||||
|                             clone_weight_pre_application = clone.input_weight_matrix() | ||||
|                             target_data_pre_application = clone.create_target_weights(clone_weight_pre_application) | ||||
|  | ||||
|                         clone.self_application(1, self.log_step_size) | ||||
|                         avg_time_to_vergence[i][noise_level] += 1 | ||||
|                         # -> after | ||||
|                         clone_weight_post_application = clone.input_weight_matrix() | ||||
|                         target_data_post_application = clone.create_target_weights(clone_weight_post_application) | ||||
|                             clone.self_application(1, self.log_step_size) | ||||
|                             time_to_vergence[setting][noise_level] += 1 | ||||
|                             # -> after | ||||
|                             clone_weight_post_application = clone.input_weight_matrix() | ||||
|                             target_data_post_application = clone.create_target_weights(clone_weight_post_application) | ||||
|  | ||||
|                         absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item() | ||||
|                             absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item() | ||||
|  | ||||
|                         setting = i if is_synthetic else seed | ||||
|  | ||||
|                         df.loc[data_pos] = [setting, noise_level, self_application_steps, absolute_loss] | ||||
|                         data_pos += 1 | ||||
|                         self_application_steps += 1 | ||||
|                             if is_identity_function(clone): | ||||
|                                 time_as_fixpoint[setting][noise_level] += 1 | ||||
|                                 # When this raises a Type Error, we found a second order fixpoint! | ||||
|                             steps += 1 | ||||
|  | ||||
|                             df.loc[df.shape[0]] = [setting, noise_level, steps, absolute_loss, | ||||
|                                                    time_to_vergence[setting][noise_level], | ||||
|                                                    time_as_fixpoint[setting][noise_level]] | ||||
|                     pbar.update(1) | ||||
|  | ||||
|         # Get the measuremts at the highest time_time_to_vergence | ||||
|         df_sorted = df.sort_values('steps', ascending=False).drop_duplicates(['setting', 'noise_level']) | ||||
|         df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'noise_level', 'steps'], | ||||
|                                                  value_vars=['time_to_vergence', 'time_as_fixpoint'], | ||||
|                                                  var_name="Measurement", | ||||
|                                                  value_name="Steps") | ||||
|         # Plotting | ||||
|         sns.set(style='whitegrid') | ||||
|         bf = sns.boxplot(data=df_melted, y='Steps', x='noise_level', hue='Measurement', palette=PALETTE) | ||||
|         bf.set_title('Robustness as self application steps per noise level') | ||||
|         plt.tight_layout() | ||||
|  | ||||
|         # calculate the average: | ||||
|         df = df.replace([np.inf, -np.inf], np.nan) | ||||
|         df = df.dropna() | ||||
|         # sns.set(rc={'figure.figsize': (10, 50)}) | ||||
|         bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box', | ||||
|                          col='noise_level', col_wrap=3, showfliers=False) | ||||
|         # bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box', | ||||
|         #                  col='noise_level', col_wrap=3, showfliers=False) | ||||
|         directory = Path('output') / 'robustness' | ||||
|         directory.mkdir(parents=True, exist_ok=True) | ||||
|         filename = f"absolute_loss_perapplication_boxplot_grid.png" | ||||
|         filepath = directory / filename | ||||
|  | ||||
| @@ -160,13 +191,11 @@ class RobustnessComparisonExperiment: | ||||
|             col_headers = [str(f"10e-{d}") for d in range(noise_levels)] | ||||
|  | ||||
|             print(f"\nAppplications steps until divergence / zero: ") | ||||
|             print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|             # print(tabulate(time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|             print(f"\nTime as fixpoint: ") | ||||
|             print(tabulate(avg_time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|         return avg_time_as_fixpoint, avg_time_to_vergence | ||||
|  | ||||
|             # print(tabulate(time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|         return time_as_fixpoint, time_to_vergence | ||||
|  | ||||
|     def count_fixpoints(self): | ||||
|         exp_details = f"ST steps: {self.ST_steps}" | ||||
| @@ -174,14 +203,12 @@ class RobustnessComparisonExperiment: | ||||
|         bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate, | ||||
|                             exp_details) | ||||
|  | ||||
|  | ||||
|     def visualize_loss(self): | ||||
|         for i in range(len(self.nets)): | ||||
|             net_loss_history = self.nets[i].loss_history | ||||
|             self.loss_history.append(net_loss_history) | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
|  | ||||
|     def save(self): | ||||
|         pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb")) | ||||
|         print(f"\nSaved experiment to {self.directory}.") | ||||
| @@ -194,7 +221,7 @@ if __name__ == "__main__": | ||||
|     ST_steps = 1000 | ||||
|     ST_epochs = 5 | ||||
|     ST_log_step_size = 10 | ||||
|     ST_population_size = 5 | ||||
|     ST_population_size = 100 | ||||
|     ST_net_hidden_size = 2 | ||||
|     ST_net_learning_rate = 0.04 | ||||
|     ST_name_hash = random.getrandbits(32) | ||||
| @@ -211,5 +238,5 @@ if __name__ == "__main__": | ||||
|         epochs=ST_epochs, | ||||
|         st_steps=ST_steps, | ||||
|         synthetic=ST_synthetic, | ||||
|         directory=Path('output') / 'robustness' / f'{ST_name_hash}' | ||||
|         directory=Path('output') / 'journal_robustness' / f'{ST_name_hash}' | ||||
|     ) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex