fixed soup_basin experiment
This commit is contained in:
		| @@ -95,7 +95,7 @@ class MixedSettingExperiment: | ||||
|         # and only they need the batch size. To not affect the number of epochs shown in the 3D plot, will send | ||||
|         # forward the number "1" for batch size with the variable <irrelevant_batch_size> | ||||
|         irrelevant_batch_size = 1 | ||||
|         plot_3d_self_train(self.nets, exp_name, self.directory_name, irrelevant_batch_size) | ||||
|         plot_3d_self_train(self.nets, exp_name, self.directory_name, irrelevant_batch_size, True) | ||||
|  | ||||
|     def count_fixpoints(self): | ||||
|         exp_details = f"SA steps: {self.SA_steps}; ST steps: {self.ST_steps_between_SA}" | ||||
|   | ||||
| @@ -88,8 +88,7 @@ class SoupExperiment: | ||||
|             # Testing for fixpoints after each batch of ST steps to see relevant data | ||||
|             if i % self.ST_steps == 0: | ||||
|                 test_for_fixpoints(self.fixpoint_counters, self.population) | ||||
|                 fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters["fix_weak"] + | ||||
|                                               self.fixpoint_counters["fix_sec"]) / self.population_size, 1) | ||||
|                 fixpoints_percentage = round(self.fixpoint_counters["identity_func"] / self.population_size, 1) | ||||
|                 self.fixpoint_counters_history.append(fixpoints_percentage) | ||||
|  | ||||
|             # Resetting the fixpoint counter. Last iteration not to be reset - | ||||
|   | ||||
| @@ -17,13 +17,14 @@ import pandas as pd | ||||
| import seaborn as sns | ||||
| from matplotlib import pyplot as plt | ||||
|  | ||||
|  | ||||
| def prng(): | ||||
|     return random.random() | ||||
|  | ||||
|  | ||||
| def l1(tup): | ||||
|     a, b = tup | ||||
|     return abs(a-b) | ||||
|     return abs(a - b) | ||||
|  | ||||
|  | ||||
| def mean_invariate_manhattan_distance(x, y): | ||||
| @@ -65,13 +66,14 @@ def distance_from_parent(nets, distance="MIM", print_it=True): | ||||
|  | ||||
|         for dist in distance_range: | ||||
|             for idx, clone in enumerate(clones): | ||||
|                 clone_weights = clone.create_target_weights(clone.input_weight_matrix())  | ||||
|                 clone_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                 if distance in ["MSE"]: | ||||
|                     matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist) | ||||
|                 elif distance in ["MAE"]: | ||||
|                     matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist) | ||||
|                 elif distance in ["MIM"]: | ||||
|                     matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10, -dist) | ||||
|                     matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10, | ||||
|                                                                                                                -dist) | ||||
|  | ||||
|         if print_it: | ||||
|             print(f"\nDistances from parent {parent.name} [{distance}]:") | ||||
| @@ -80,9 +82,10 @@ def distance_from_parent(nets, distance="MIM", print_it=True): | ||||
|             print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl')) | ||||
|  | ||||
|         list_of_matrices.append(matrix) | ||||
|      | ||||
|  | ||||
|     return list_of_matrices | ||||
|  | ||||
|  | ||||
| class SpawnExperiment: | ||||
|  | ||||
|     @staticmethod | ||||
| @@ -92,12 +95,12 @@ class SpawnExperiment: | ||||
|         for layer_id, layer_name in enumerate(network.state_dict()): | ||||
|             for line_id, line_values in enumerate(network.state_dict()[layer_name]): | ||||
|                 for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]): | ||||
|                     #network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     # network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     if prng() < 0.5: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise | ||||
|                     else: | ||||
|                         network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise | ||||
|                      | ||||
|  | ||||
|         return network | ||||
|  | ||||
|     def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, | ||||
| @@ -144,7 +147,9 @@ class SpawnExperiment: | ||||
|     def spawn_and_continue(self, number_clones: int = None): | ||||
|         number_clones = number_clones or self.nr_clones | ||||
|  | ||||
|         df = pd.DataFrame(columns=['parent', 'MAE_pre','MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', 'status_post']) | ||||
|         df = pd.DataFrame( | ||||
|             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|                      'status_post']) | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
|         for i in range(self.population_size): | ||||
| @@ -155,7 +160,7 @@ class SpawnExperiment: | ||||
|             net.start_time = self.ST_steps - 150 | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|              | ||||
|  | ||||
|             if is_identity_function(net): | ||||
|                 print(f"\nNet {i} is fixpoint") | ||||
|  | ||||
| @@ -171,7 +176,7 @@ class SpawnExperiment: | ||||
|                     clone = self.apply_noise(clone, rand_noise) | ||||
|                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||
|                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||
|                      | ||||
|  | ||||
|                     # Pre Training distances (after noise application of course) | ||||
|                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||
| @@ -182,7 +187,7 @@ class SpawnExperiment: | ||||
|                     for _ in range(self.epochs - 1): | ||||
|                         for _ in range(self.ST_steps): | ||||
|                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                      | ||||
|  | ||||
|                     # Post Training distances for comparison | ||||
|                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||
| @@ -192,23 +197,24 @@ class SpawnExperiment: | ||||
|                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                     test_status(clone) | ||||
|                     if is_identity_function(clone): | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint."  | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                               f"\nMSE({i},{j}): {MSE_post}" | ||||
|                               f"\nMAE({i},{j}): {MAE_post}" | ||||
|                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|  | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                           clone.is_fixpoint] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
|                     for _ in range(self.ST_steps): | ||||
|                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||
|                 print(f"Parent net's distance to original position."  | ||||
|                               f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                               f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                               f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|                 print(f"Parent net's distance to original position." | ||||
|                       f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|  | ||||
|         self.df = df | ||||
|  | ||||
| @@ -222,11 +228,11 @@ class SpawnExperiment: | ||||
|             self.loss_history.append(net_loss_history) | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
|  | ||||
|     def save(self): | ||||
|         pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb")) | ||||
|         print(f"\nSaved experiment to {self.directory}.") | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     NET_INPUT_SIZE = 4 | ||||
| @@ -248,7 +254,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     print(f"Running the Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2,5): | ||||
|     for noise_factor in range(2, 5): | ||||
|         exp = SpawnExperiment( | ||||
|             population_size=ST_population_size, | ||||
|             log_step_size=ST_log_step_size, | ||||
| @@ -272,4 +278,4 @@ if __name__ == "__main__": | ||||
|     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||
|     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||
|     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
|   | ||||
| @@ -124,11 +124,13 @@ class SoupSpawnExperiment: | ||||
|  | ||||
|         # Populating environment & evolving entities | ||||
|         self.nets = [] | ||||
|         self.id_functions = [] | ||||
|         self.clone_soup = [] | ||||
|         self.populate_environment() | ||||
|         self.evolve() | ||||
|  | ||||
|         self.spawn_and_continue() | ||||
|         self.weights_evolution_3d_experiment() | ||||
|         self.weights_evolution_3d_experiment(self.nets, "parents") | ||||
|         self.weights_evolution_3d_experiment(self.clone_soup, "clones") | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||
| @@ -140,27 +142,35 @@ class SoupSpawnExperiment: | ||||
|         for i in loop_population_size: | ||||
|             loop_population_size.set_description("Populating experiment %s" % i) | ||||
|  | ||||
|             net_name = f"soup_net_{str(i)}" | ||||
|             net_name = f"parent_net_{str(i)}" | ||||
|             net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name) | ||||
|  | ||||
|             for _ in range(self.ST_steps): | ||||
|                 net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|             self.nets.append(net) | ||||
|  | ||||
|     def evolve(self): | ||||
|         loop_epochs = tqdm(range(self.epochs)) | ||||
|             if is_identity_function(net): | ||||
|                 self.id_functions.append(net) | ||||
|  | ||||
|     def evolve(self, population): | ||||
|         print(f"Clone soup has a population of {len(population)} networks") | ||||
|  | ||||
|         loop_epochs = tqdm(range(self.epochs-1)) | ||||
|         for i in loop_epochs: | ||||
|             loop_epochs.set_description("Evolving soup %s" % i) | ||||
|             loop_epochs.set_description("\nEvolving clone soup %s" % i) | ||||
|  | ||||
|             # A network attacking another network with a given percentage | ||||
|             if random.randint(1, 100) <= self.attack_chance: | ||||
|                 random_net1, random_net2 = random.sample(range(self.population_size), 2) | ||||
|                 random_net1 = self.nets[random_net1] | ||||
|                 random_net2 = self.nets[random_net2] | ||||
|                 random_net1, random_net2 = random.sample(range(len(population)), 2) | ||||
|                 random_net1 = population[random_net1] | ||||
|                 random_net2 = population[random_net2] | ||||
|                 print(f"\n Attack: {random_net1.name} -> {random_net2.name}") | ||||
|                 random_net1.attack(random_net2) | ||||
|  | ||||
|             #  Self-training each network in the population | ||||
|             for j in range(self.population_size): | ||||
|                 net = self.nets[j] | ||||
|             for j in range(len(population)): | ||||
|                 net = population[j] | ||||
|  | ||||
|                 for _ in range(self.ST_steps): | ||||
|                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
| @@ -172,8 +182,10 @@ class SoupSpawnExperiment: | ||||
|             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|                      'status_post']) | ||||
|  | ||||
|         # MAE_pre, MSE_pre, MIM_pre = 0, 0, 0 | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
|         for i in range(self.population_size): | ||||
|         for i in range(len(self.id_functions)): | ||||
|             net = self.nets[i] | ||||
|             # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to | ||||
|             # to see full trajectory (but the clones will be very hard to see). | ||||
| @@ -182,66 +194,73 @@ class SoupSpawnExperiment: | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|  | ||||
|             if is_identity_function(net): | ||||
|                 print(f"\nNet {i} is fixpoint") | ||||
|             print(f"\nNet {i} is fixpoint") | ||||
|  | ||||
|                 # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; | ||||
|                 # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||
|                 # To make sure PCA will plot the same trajectory up until this point, we clone the | ||||
|                 # parent-net's weight history as well. | ||||
|                 for j in range(number_clones): | ||||
|                     clone = Net(net.input_size, net.hidden_size, net.out_size, | ||||
|                                 f"ST_net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps) | ||||
|                     clone.load_state_dict(copy.deepcopy(net.state_dict())) | ||||
|                     rand_noise = prng() * self.noise | ||||
|                     clone = self.apply_noise(clone, rand_noise) | ||||
|                     clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||
|                     clone.number_trained = copy.deepcopy(net.number_trained) | ||||
|             # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; | ||||
|             # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||
|             # To make sure PCA will plot the same trajectory up until this point, we clone the | ||||
|             # parent-net's weight history as well. | ||||
|             for j in range(number_clones): | ||||
|                 clone = Net(net.input_size, net.hidden_size, net.out_size, | ||||
|                             f"net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps) | ||||
|                 clone.load_state_dict(copy.deepcopy(net.state_dict())) | ||||
|                 rand_noise = prng() * self.noise | ||||
|                 clone = self.apply_noise(clone, rand_noise) | ||||
|                 clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history) | ||||
|                 clone.number_trained = copy.deepcopy(net.number_trained) | ||||
|  | ||||
|                     # Pre Training distances (after noise application of course) | ||||
|                     clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||
|                     MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||
|                     MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|                 # Pre Training distances (after noise application of course) | ||||
|                 clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                 MAE_pre = MAE(net_target_data, clone_pre_weights) | ||||
|                 MSE_pre = MSE(net_target_data, clone_pre_weights) | ||||
|                 MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|  | ||||
|                     # Then finish training each clone {j} (for remaining epoch-1 * ST_steps) .. | ||||
|                     for _ in range(self.epochs - 1): | ||||
|                         for _ in range(self.ST_steps): | ||||
|                             clone.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                 net.children.append(clone) | ||||
|                 self.clone_soup.append(clone) | ||||
|  | ||||
|                     # Post Training distances for comparison | ||||
|                     clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                     MAE_post = MAE(net_target_data, clone_post_weights) | ||||
|                     MSE_post = MSE(net_target_data, clone_post_weights) | ||||
|                     MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||
|         self.evolve(self.clone_soup) | ||||
|  | ||||
|                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                     test_status(clone) | ||||
|                     if is_identity_function(clone): | ||||
|                         print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                               f"\nMSE({i},{j}): {MSE_post}" | ||||
|                               f"\nMAE({i},{j}): {MAE_post}" | ||||
|                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|         for i in range(len(self.id_functions)): | ||||
|             net = self.nets[i] | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|  | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                           clone.is_fixpoint] | ||||
|             for j in range(len(net.children)): | ||||
|                 clone = net.children[j] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
|                     for _ in range(self.ST_steps): | ||||
|                         net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|                 net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||
|                 print(f"Parent net's distance to original position." | ||||
|                       f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                       f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|                 # Post Training distances for comparison | ||||
|                 clone_post_weights = clone.create_target_weights(clone.input_weight_matrix()) | ||||
|                 MAE_post = MAE(net_target_data, clone_post_weights) | ||||
|                 MSE_post = MSE(net_target_data, clone_post_weights) | ||||
|                 MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||
|  | ||||
|             # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                 test_status(clone) | ||||
|                 if is_identity_function(clone): | ||||
|                     print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                           f"\nMSE({i},{j}): {MSE_post}" | ||||
|                           f"\nMAE({i},{j}): {MAE_post}" | ||||
|                           f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                     self.nets.append(clone) | ||||
|  | ||||
|                 df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                       clone.is_fixpoint] | ||||
|  | ||||
|             # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|             for _ in range(self.epochs - 1): | ||||
|                 for _ in range(self.ST_steps): | ||||
|                     net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|             net_weights_after = net.create_target_weights(net.input_weight_matrix()) | ||||
|             print(f"Parent net's distance to original position." | ||||
|                   f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}" | ||||
|                   f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}" | ||||
|                   f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n") | ||||
|  | ||||
|         self.df = df | ||||
|  | ||||
|     def weights_evolution_3d_experiment(self): | ||||
|         exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA" | ||||
|         return plot_3d_soup(self.nets, exp_name, self.directory) | ||||
|     def weights_evolution_3d_experiment(self, nets_population, suffix): | ||||
|         exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA_{suffix}" | ||||
|         return plot_3d_soup(nets_population, exp_name, self.directory) | ||||
|  | ||||
|     def visualize_loss(self): | ||||
|         for i in range(len(self.nets)): | ||||
| @@ -262,12 +281,12 @@ if __name__ == "__main__": | ||||
|     # Define number of runs & name: | ||||
|     ST_runs = 1 | ||||
|     ST_runs_name = "test-27" | ||||
|     soup_ST_steps = 2500 | ||||
|     soup_ST_steps = 1500 | ||||
|     soup_epochs = 2 | ||||
|     soup_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 15 | ||||
|     nr_clones = 2 | ||||
|     soup_population_size = 2 | ||||
|     soup_net_hidden_size = 2 | ||||
|     soup_net_learning_rate = 0.04 | ||||
|   | ||||
| @@ -48,7 +48,10 @@ class Net(nn.Module): | ||||
|     def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None: | ||||
|         super().__init__() | ||||
|         self.start_time = start_time | ||||
|  | ||||
|         self.name = name | ||||
|         self.children = [] | ||||
|  | ||||
|         self.input_size = i_size | ||||
|         self.hidden_size = h_size | ||||
|         self.out_size = o_size | ||||
|   | ||||
| @@ -73,7 +73,7 @@ def bar_chart_fixpoints(fixpoint_counter: Dict, population_size: int, directory: | ||||
|  | ||||
|  | ||||
| def plot_3d(matrices_weights_history, directory: Union[str, Path], population_size, z_axis_legend, | ||||
|             exp_name="experiment", is_trained="", batch_size=1, plot_pca_together=False): | ||||
|             exp_name="experiment", is_trained="", batch_size=1, plot_pca_together=False, nets_array=None): | ||||
|     """ Plotting the the weights of the nets in a 3d form using principal component analysis (PCA) """ | ||||
|  | ||||
|     fig = plt.figure() | ||||
| @@ -134,7 +134,10 @@ def plot_3d(matrices_weights_history, directory: Union[str, Path], population_si | ||||
|             zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size) | ||||
|  | ||||
|             ax.plot3D(xdata, ydata, zdata, label=f"net {i}") | ||||
|             ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=7) | ||||
|             if "parent" in nets_array[i].name: | ||||
|                 ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=3, c="b") | ||||
|             else: | ||||
|                 ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=3) | ||||
|  | ||||
|     steps = mpatches.Patch(color="white", label=f"{z_axis_legend}: {len(matrices_weights_history)} steps") | ||||
|     population_size = mpatches.Patch(color="white", label=f"Population: {population_size} networks") | ||||
| @@ -165,7 +168,7 @@ def plot_3d(matrices_weights_history, directory: Union[str, Path], population_si | ||||
|     else: | ||||
|         plt.savefig(str(filepath)) | ||||
|  | ||||
|     plt.show() | ||||
|     # plt.show() | ||||
|  | ||||
|  | ||||
| def plot_3d_self_train(nets_array: List, exp_name: str, directory: Union[str, Path], batch_size: int, plot_pca_together: bool): | ||||
| @@ -177,12 +180,12 @@ def plot_3d_self_train(nets_array: List, exp_name: str, directory: Union[str, Pa | ||||
|     for i in loop_nets_array: | ||||
|         loop_nets_array.set_description("Creating ST weights history %s" % i) | ||||
|  | ||||
|         matrices_weights_history.append( (nets_array[i].s_train_weights_history, nets_array[i].start_time) ) | ||||
|         matrices_weights_history.append((nets_array[i].s_train_weights_history, nets_array[i].start_time)) | ||||
|          | ||||
|     z_axis_legend = "epochs" | ||||
|  | ||||
|     return plot_3d(matrices_weights_history, directory, len(nets_array), z_axis_legend, exp_name, "", batch_size, | ||||
|                    plot_pca_together=plot_pca_together) | ||||
|                    plot_pca_together=plot_pca_together, nets_array=nets_array) | ||||
|  | ||||
|  | ||||
| def plot_3d_self_application(nets_array: List, exp_name: str, directory_name: Union[str, Path], batch_size: int) -> None: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex