self-replicating-neural-net.../journal_soup_basins.py
2021-06-05 17:44:37 +03:00

324 lines
14 KiB
Python

import os
from pathlib import Path
import pickle
from torch import mean
from tqdm import tqdm
import random
import copy
from functionalities_test import is_identity_function, test_status, test_for_fixpoints
from network import Net
from visualization import plot_3d_self_train, plot_loss, plot_3d_soup
import numpy as np
from tabulate import tabulate
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.metrics import mean_squared_error as MSE
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
def prng():
return random.random()
def l1(tup):
a, b = tup
return abs(a - b)
def mean_invariate_manhattan_distance(x, y):
# One of these one-liners that might be smart or really dumb. Goal is to find pairwise
# distances of ascending values, ie. sum (abs(min1_X-min1_Y), abs(min2_X-min2Y) ...) / mean.
# Idea was to find weight sets that have same values but just in different positions, that would
# make this distance 0.
return np.mean(list(map(l1, zip(sorted(x.numpy()), sorted(y.numpy())))))
def distance_matrix(nets, distance="MIM", print_it=True):
matrix = [[0 for _ in range(len(nets))] for _ in range(len(nets))]
for net in range(len(nets)):
weights = nets[net].input_weight_matrix()[:, 0]
for other_net in range(len(nets)):
other_weights = nets[other_net].input_weight_matrix()[:, 0]
if distance in ["MSE"]:
matrix[net][other_net] = MSE(weights, other_weights)
elif distance in ["MAE"]:
matrix[net][other_net] = MAE(weights, other_weights)
elif distance in ["MIM"]:
matrix[net][other_net] = mean_invariate_manhattan_distance(weights, other_weights)
if print_it:
print(f"\nDistance matrix (all to all) [{distance}]:")
headers = [i.name for i in nets]
print(tabulate(matrix, showindex=headers, headers=headers, tablefmt='orgtbl'))
return matrix
def distance_from_parent(nets, distance="MIM", print_it=True):
list_of_matrices = []
parents = list(filter(lambda x: "clone" not in x.name and is_identity_function(x), nets))
distance_range = range(10)
for parent in parents:
parent_weights = parent.create_target_weights(parent.input_weight_matrix())
clones = list(filter(lambda y: parent.name in y.name and parent.name != y.name, nets))
matrix = [[0 for _ in distance_range] for _ in range(len(clones))]
for dist in distance_range:
for idx, clone in enumerate(clones):
clone_weights = clone.create_target_weights(clone.input_weight_matrix())
if distance in ["MSE"]:
matrix[idx][dist] = MSE(parent_weights, clone_weights) < pow(10, -dist)
elif distance in ["MAE"]:
matrix[idx][dist] = MAE(parent_weights, clone_weights) < pow(10, -dist)
elif distance in ["MIM"]:
matrix[idx][dist] = mean_invariate_manhattan_distance(parent_weights, clone_weights) < pow(10,
-dist)
if print_it:
print(f"\nDistances from parent {parent.name} [{distance}]:")
col_headers = [str(f"10e-{d}") for d in distance_range]
row_headers = [str(f"clone_{i}") for i in range(len(clones))]
print(tabulate(matrix, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
list_of_matrices.append(matrix)
return list_of_matrices
class SoupSpawnExperiment:
@staticmethod
def apply_noise(network, noise: int):
""" Changing the weights of a network to values + noise """
for layer_id, layer_name in enumerate(network.state_dict()):
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
# network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
if prng() < 0.5:
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
else:
network.state_dict()[layer_name][line_id][weight_id] = weight_value - noise
return network
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
epochs, st_steps, attack_chance, nr_clones, noise, directory) -> None:
self.population_size = population_size
self.log_step_size = log_step_size
self.net_input_size = net_input_size
self.net_hidden_size = net_hidden_size
self.net_out_size = net_out_size
self.net_learning_rate = net_learning_rate
self.epochs = epochs
self.ST_steps = st_steps
self.attack_chance = attack_chance
self.loss_history = []
self.nr_clones = nr_clones
self.noise = noise or 10e-5
print("\nNOISE:", self.noise)
self.directory = Path(directory)
self.directory.mkdir(parents=True, exist_ok=True)
# Populating environment & evolving entities
self.nets = []
self.id_functions = []
self.clone_soup = []
self.populate_environment()
self.spawn_and_continue()
self.weights_evolution_3d_experiment(self.nets, "parents")
self.weights_evolution_3d_experiment(self.clone_soup, "clones")
# self.visualize_loss()
self.distance_matrix = distance_matrix(self.nets, print_it=False)
self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
self.save()
def populate_environment(self):
loop_population_size = tqdm(range(self.population_size))
for i in loop_population_size:
loop_population_size.set_description("Populating experiment %s" % i)
net_name = f"parent_net_{str(i)}"
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
self.nets.append(net)
if is_identity_function(net):
self.id_functions.append(net)
def evolve(self, population):
print(f"Clone soup has a population of {len(population)} networks")
loop_epochs = tqdm(range(self.epochs-1))
for i in loop_epochs:
loop_epochs.set_description("\nEvolving clone soup %s" % i)
# A network attacking another network with a given percentage
if random.randint(1, 100) <= self.attack_chance:
random_net1, random_net2 = random.sample(range(len(population)), 2)
random_net1 = population[random_net1]
random_net2 = population[random_net2]
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
random_net1.attack(random_net2)
# Self-training each network in the population
for j in range(len(population)):
net = population[j]
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
def spawn_and_continue(self, number_clones: int = None):
number_clones = number_clones or self.nr_clones
df = pd.DataFrame(
columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
'status_post'])
# MAE_pre, MSE_pre, MIM_pre = 0, 0, 0
# For every initial net {i} after populating (that is fixpoint after first epoch);
for i in range(len(self.id_functions)):
net = self.nets[i]
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
# to see full trajectory (but the clones will be very hard to see).
# Make one target to compare distances to clones later when they have trained.
net.start_time = self.ST_steps - 150
net_input_data = net.input_weight_matrix()
net_target_data = net.create_target_weights(net_input_data)
print(f"\nNet {i} is fixpoint")
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
# To make sure PCA will plot the same trajectory up until this point, we clone the
# parent-net's weight history as well.
for j in range(number_clones):
clone = Net(net.input_size, net.hidden_size, net.out_size,
f"net_{str(i)}_clone_{str(j)}", start_time=self.ST_steps)
clone.load_state_dict(copy.deepcopy(net.state_dict()))
rand_noise = prng() * self.noise
clone = self.apply_noise(clone, rand_noise)
clone.s_train_weights_history = copy.deepcopy(net.s_train_weights_history)
clone.number_trained = copy.deepcopy(net.number_trained)
# Pre Training distances (after noise application of course)
clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix())
MAE_pre = MAE(net_target_data, clone_pre_weights)
MSE_pre = MSE(net_target_data, clone_pre_weights)
MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights)
net.children.append(clone)
self.clone_soup.append(clone)
self.evolve(self.clone_soup)
for i in range(len(self.id_functions)):
net = self.nets[i]
net_input_data = net.input_weight_matrix()
net_target_data = net.create_target_weights(net_input_data)
for j in range(len(net.children)):
clone = net.children[j]
# Post Training distances for comparison
clone_post_weights = clone.create_target_weights(clone.input_weight_matrix())
MAE_post = MAE(net_target_data, clone_post_weights)
MSE_post = MSE(net_target_data, clone_post_weights)
MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights)
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
test_status(clone)
if is_identity_function(clone):
print(f"Clone {j} (of net_{i}) is fixpoint."
f"\nMSE({i},{j}): {MSE_post}"
f"\nMAE({i},{j}): {MAE_post}"
f"\nMIM({i},{j}): {MIM_post}\n")
self.nets.append(clone)
df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
clone.is_fixpoint]
# Finally take parent net {i} and finish it's training for comparison to clone development.
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
net.self_train(1, self.log_step_size, self.net_learning_rate)
net_weights_after = net.create_target_weights(net.input_weight_matrix())
print(f"Parent net's distance to original position."
f"\nMSE(OG,new): {MAE(net_target_data, net_weights_after)}"
f"\nMAE(OG,new): {MSE(net_target_data, net_weights_after)}"
f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net_target_data, net_weights_after)}\n")
self.df = df
def weights_evolution_3d_experiment(self, nets_population, suffix):
exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA_{suffix}"
return plot_3d_soup(nets_population, exp_name, self.directory)
def visualize_loss(self):
for i in range(len(self.nets)):
net_loss_history = self.nets[i].loss_history
self.loss_history.append(net_loss_history)
plot_loss(self.loss_history, self.directory)
def save(self):
pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb"))
print(f"\nSaved experiment to {self.directory}.")
if __name__ == "__main__":
NET_INPUT_SIZE = 4
NET_OUT_SIZE = 1
# Define number of runs & name:
ST_runs = 1
ST_runs_name = "test-27"
soup_ST_steps = 1500
soup_epochs = 2
soup_log_step_size = 10
# Define number of networks & their architecture
nr_clones = 2
soup_population_size = 2
soup_net_hidden_size = 2
soup_net_learning_rate = 0.04
soup_attack_chance = 10
soup_name_hash = random.getrandbits(32)
print(f"Running the Soup-Spawn experiment:")
exp_list = []
for noise_factor in range(2, 5):
exp = SoupSpawnExperiment(
population_size=soup_population_size,
log_step_size=soup_log_step_size,
net_input_size=NET_INPUT_SIZE,
net_hidden_size=soup_net_hidden_size,
net_out_size=NET_OUT_SIZE,
net_learning_rate=soup_net_learning_rate,
epochs=soup_epochs,
st_steps=soup_ST_steps,
attack_chance=soup_attack_chance,
nr_clones=nr_clones,
noise=pow(10, -noise_factor),
directory=Path('output') / 'soup_spawn_basin' / f'{soup_name_hash}' / f'10e-{noise_factor}'
)
exp_list.append(exp)
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
df = pd.concat([exp.df for exp in exp_list])
sns.countplot(data=df, x="noise", hue="status_post")
plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/fixpoint_status_countplot.png")
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
plt.savefig(f"output/soup_spawn_basin/{soup_name_hash}/clone_distance_catplot.png")