journal linspace basins
This commit is contained in:
		| @@ -5,6 +5,7 @@ import random | ||||
|  | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| import torch | ||||
|  | ||||
| from functionalities_test import is_identity_function, test_status | ||||
| from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance | ||||
| @@ -16,6 +17,7 @@ from sklearn.metrics import mean_squared_error as MSE | ||||
| import seaborn as sns | ||||
| from matplotlib import pyplot as plt | ||||
|  | ||||
|  | ||||
| class SpawnLinspaceExperiment(SpawnExperiment): | ||||
|  | ||||
|     def spawn_and_continue(self, number_clones: int = None): | ||||
| @@ -44,11 +46,12 @@ class SpawnLinspaceExperiment(SpawnExperiment): | ||||
|                 # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||
|                 # To make sure PCA will plot the same trajectory up until this point, we clone the | ||||
|                 # parent-net's weight history as well. | ||||
|                 in_between_weights = np.linspace(net2_target_data, net2_target_data, number_clones) | ||||
|                 in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones,endpoint=False) | ||||
|  | ||||
|                 for in_between_weight in in_between_weights: | ||||
|                     clone = Net(net1.input_size, net1.hidden_size, net1.out_size, start_time=self.ST_steps) | ||||
|                     clone.apply_weights(in_between_weight) | ||||
|                 for j, in_between_weight in enumerate(in_between_weights): | ||||
|                     clone = Net(net1.input_size, net1.hidden_size, net1.out_size, | ||||
|                                 name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps) | ||||
|                     clone.apply_weights(torch.as_tensor(in_between_weight)) | ||||
|  | ||||
|                     clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history) | ||||
|                     clone.number_trained = copy.deepcopy(net1.number_trained) | ||||
| @@ -73,14 +76,14 @@ class SpawnLinspaceExperiment(SpawnExperiment): | ||||
|                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                     test_status(clone) | ||||
|                     if is_identity_function(clone): | ||||
|                         #print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                         #      f"\nMSE({i},{j}): {MSE_post}" | ||||
|                         #      f"\nMAE({i},{j}): {MAE_post}" | ||||
|                         #      f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         print(f"Clone {j} (of net_{net1.name}) is fixpoint." | ||||
|                               f"\nMSE({net1.name},{j}): {MSE_post}" | ||||
|                               f"\nMAE({net1.name},{j}): {MAE_post}" | ||||
|                               f"\nMIM({net1.name},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|  | ||||
|                     df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                           clone.is_fixpoint] | ||||
|                     df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, | ||||
|                                           self.noise, clone.is_fixpoint] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
| @@ -107,36 +110,32 @@ if __name__ == '__main__': | ||||
|     ST_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 5 | ||||
|     ST_population_size = 2 | ||||
|     nr_clones = 8 | ||||
|     ST_population_size = 3 | ||||
|     ST_net_hidden_size = 2 | ||||
|     ST_net_learning_rate = 0.04 | ||||
|     ST_name_hash = random.getrandbits(32) | ||||
|  | ||||
|     print(f"Running the Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2, 5): | ||||
|         exp = SpawnExperiment( | ||||
|             population_size=ST_population_size, | ||||
|             log_step_size=ST_log_step_size, | ||||
|             net_input_size=NET_INPUT_SIZE, | ||||
|             net_hidden_size=ST_net_hidden_size, | ||||
|             net_out_size=NET_OUT_SIZE, | ||||
|             net_learning_rate=ST_net_learning_rate, | ||||
|             epochs=ST_epochs, | ||||
|             st_steps=ST_steps, | ||||
|             nr_clones=nr_clones, | ||||
|             noise=pow(10, -noise_factor), | ||||
|             directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}' | ||||
|         ) | ||||
|         exp_list.append(exp) | ||||
|     df = SpawnLinspaceExperiment( | ||||
|         population_size=ST_population_size, | ||||
|         log_step_size=ST_log_step_size, | ||||
|         net_input_size=NET_INPUT_SIZE, | ||||
|         net_hidden_size=ST_net_hidden_size, | ||||
|         net_out_size=NET_OUT_SIZE, | ||||
|         net_learning_rate=ST_net_learning_rate, | ||||
|         epochs=ST_epochs, | ||||
|         st_steps=ST_steps, | ||||
|         nr_clones=nr_clones, | ||||
|         noise=None, | ||||
|         directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'linage' | ||||
|     ).df | ||||
|  | ||||
|     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis | ||||
|     df = pd.concat([exp.df for exp in exp_list]) | ||||
|     sns.countplot(data=df, x="noise", hue="status_post") | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png") | ||||
|  | ||||
|     # Catplot (either kind="point" or "box") that shows before-after training distances to parent | ||||
|     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||
|     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
|   | ||||
| @@ -124,7 +124,6 @@ class SpawnExperiment: | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||
|  | ||||
|         self.save() | ||||
|  | ||||
|     def populate_environment(self): | ||||
| @@ -243,7 +242,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 5 | ||||
|     ST_population_size = 1 | ||||
|     ST_population_size = 2 | ||||
|     ST_net_hidden_size = 2 | ||||
|     ST_net_learning_rate = 0.04 | ||||
|     ST_name_hash = random.getrandbits(32) | ||||
|   | ||||
| @@ -216,7 +216,8 @@ def plot_3d_soup(nets_list, exp_name, directory: Union[str, Path]): | ||||
|     # will send forward the number "1" for batch size with the variable <irrelevant_batch_size>. | ||||
|     irrelevant_batch_size = 1 | ||||
|  | ||||
|     plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False) | ||||
|     # plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False) | ||||
|     plot_3d_self_train(nets_list, exp_name, directory, 10, True) | ||||
|  | ||||
|  | ||||
| def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 steffen-illium
					steffen-illium