142 lines
6.7 KiB
Python
142 lines
6.7 KiB
Python
import copy
|
|
import itertools
|
|
from pathlib import Path
|
|
import random
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
import torch
|
|
|
|
from functionalities_test import is_identity_function, test_status
|
|
from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance
|
|
from network import Net
|
|
|
|
from sklearn.metrics import mean_absolute_error as MAE
|
|
from sklearn.metrics import mean_squared_error as MSE
|
|
|
|
import seaborn as sns
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
class SpawnLinspaceExperiment(SpawnExperiment):
|
|
|
|
def spawn_and_continue(self, number_clones: int = None):
|
|
number_clones = number_clones or self.nr_clones
|
|
|
|
df = pd.DataFrame(
|
|
columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
|
|
'status_post'])
|
|
|
|
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
|
pairwise_net_list = itertools.permutations(self.nets, 2)
|
|
for net1, net2 in pairwise_net_list:
|
|
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
|
|
# to see full trajectory (but the clones will be very hard to see).
|
|
# Make one target to compare distances to clones later when they have trained.
|
|
net1.start_time = self.ST_steps - 150
|
|
net1_input_data = net1.input_weight_matrix()
|
|
net1_target_data = net1.create_target_weights(net1_input_data)
|
|
|
|
net2.start_time = self.ST_steps - 150
|
|
net2_input_data = net2.input_weight_matrix()
|
|
net2_target_data = net2.create_target_weights(net2_input_data)
|
|
|
|
if is_identity_function(net1) and is_identity_function(net2):
|
|
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
|
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
|
# To make sure PCA will plot the same trajectory up until this point, we clone the
|
|
# parent-net's weight history as well.
|
|
in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones,endpoint=False)
|
|
|
|
for j, in_between_weight in enumerate(in_between_weights):
|
|
clone = Net(net1.input_size, net1.hidden_size, net1.out_size,
|
|
name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps)
|
|
clone.apply_weights(torch.as_tensor(in_between_weight))
|
|
|
|
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
|
|
clone.number_trained = copy.deepcopy(net1.number_trained)
|
|
|
|
# Pre Training distances (after noise application of course)
|
|
clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix())
|
|
MAE_pre = MAE(net1_target_data, clone_pre_weights)
|
|
MSE_pre = MSE(net1_target_data, clone_pre_weights)
|
|
MIM_pre = mean_invariate_manhattan_distance(net1_target_data, clone_pre_weights)
|
|
|
|
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) ..
|
|
for _ in range(self.epochs - 1):
|
|
for _ in range(self.ST_steps):
|
|
clone.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
# Post Training distances for comparison
|
|
clone_post_weights = clone.create_target_weights(clone.input_weight_matrix())
|
|
MAE_post = MAE(net1_target_data, clone_post_weights)
|
|
MSE_post = MSE(net1_target_data, clone_post_weights)
|
|
MIM_post = mean_invariate_manhattan_distance(net1_target_data, clone_post_weights)
|
|
|
|
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
|
test_status(clone)
|
|
if is_identity_function(clone):
|
|
print(f"Clone {j} (of net_{net1.name}) is fixpoint."
|
|
f"\nMSE({net1.name},{j}): {MSE_post}"
|
|
f"\nMAE({net1.name},{j}): {MAE_post}"
|
|
f"\nMIM({net1.name},{j}): {MIM_post}\n")
|
|
self.nets.append(clone)
|
|
|
|
df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post,
|
|
self.noise, clone.is_fixpoint]
|
|
|
|
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
|
for _ in range(self.epochs - 1):
|
|
for _ in range(self.ST_steps):
|
|
net1.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
net_weights_after = net1.create_target_weights(net1.input_weight_matrix())
|
|
print(f"Parent net's distance to original position."
|
|
f"\nMSE(OG,new): {MAE(net1_target_data, net_weights_after)}"
|
|
f"\nMAE(OG,new): {MSE(net1_target_data, net_weights_after)}"
|
|
f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net1_target_data, net_weights_after)}\n")
|
|
|
|
self.df = df
|
|
|
|
|
|
if __name__ == '__main__':
|
|
NET_INPUT_SIZE = 4
|
|
NET_OUT_SIZE = 1
|
|
|
|
# Define number of runs & name:
|
|
ST_runs = 1
|
|
ST_runs_name = "test-27"
|
|
ST_steps = 2000
|
|
ST_epochs = 2
|
|
ST_log_step_size = 10
|
|
|
|
# Define number of networks & their architecture
|
|
nr_clones = 8
|
|
ST_population_size = 3
|
|
ST_net_hidden_size = 2
|
|
ST_net_learning_rate = 0.04
|
|
ST_name_hash = random.getrandbits(32)
|
|
|
|
print(f"Running the Spawn experiment:")
|
|
df = SpawnLinspaceExperiment(
|
|
population_size=ST_population_size,
|
|
log_step_size=ST_log_step_size,
|
|
net_input_size=NET_INPUT_SIZE,
|
|
net_hidden_size=ST_net_hidden_size,
|
|
net_out_size=NET_OUT_SIZE,
|
|
net_learning_rate=ST_net_learning_rate,
|
|
epochs=ST_epochs,
|
|
st_steps=ST_steps,
|
|
nr_clones=nr_clones,
|
|
noise=None,
|
|
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'linage'
|
|
).df
|
|
|
|
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
|
|
sns.countplot(data=df, x="noise", hue="status_post")
|
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
|
|
|
|
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
|
|
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
|
|
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
|
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
|