diff --git a/journal_basin_linspace_clones.py b/journal_basin_linspace_clones.py
index 7da4b2c..0ead425 100644
--- a/journal_basin_linspace_clones.py
+++ b/journal_basin_linspace_clones.py
@@ -5,6 +5,7 @@ import random
 
 import pandas as pd
 import numpy as np
+import torch
 
 from functionalities_test import is_identity_function, test_status
 from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance
@@ -16,6 +17,7 @@ from sklearn.metrics import mean_squared_error as MSE
 import seaborn as sns
 from matplotlib import pyplot as plt
 
+
 class SpawnLinspaceExperiment(SpawnExperiment):
 
     def spawn_and_continue(self, number_clones: int = None):
@@ -44,11 +46,12 @@ class SpawnLinspaceExperiment(SpawnExperiment):
                 # To plot clones starting after first epoch (z=ST_steps), set that as start_time!
                 # To make sure PCA will plot the same trajectory up until this point, we clone the
                 # parent-net's weight history as well.
-                in_between_weights = np.linspace(net2_target_data, net2_target_data, number_clones)
+                in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones,endpoint=False)
 
-                for in_between_weight in in_between_weights:
-                    clone = Net(net1.input_size, net1.hidden_size, net1.out_size, start_time=self.ST_steps)
-                    clone.apply_weights(in_between_weight)
+                for j, in_between_weight in enumerate(in_between_weights):
+                    clone = Net(net1.input_size, net1.hidden_size, net1.out_size,
+                                name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps)
+                    clone.apply_weights(torch.as_tensor(in_between_weight))
 
                     clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
                     clone.number_trained = copy.deepcopy(net1.number_trained)
@@ -73,14 +76,14 @@ class SpawnLinspaceExperiment(SpawnExperiment):
                     # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
                     test_status(clone)
                     if is_identity_function(clone):
-                        #print(f"Clone {j} (of net_{i}) is fixpoint."
-                        #      f"\nMSE({i},{j}): {MSE_post}"
-                        #      f"\nMAE({i},{j}): {MAE_post}"
-                        #      f"\nMIM({i},{j}): {MIM_post}\n")
+                        print(f"Clone {j} (of net_{net1.name}) is fixpoint."
+                              f"\nMSE({net1.name},{j}): {MSE_post}"
+                              f"\nMAE({net1.name},{j}): {MAE_post}"
+                              f"\nMIM({net1.name},{j}): {MIM_post}\n")
                         self.nets.append(clone)
 
-                    df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
-                                          clone.is_fixpoint]
+                    df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post,
+                                          self.noise, clone.is_fixpoint]
 
                 # Finally take parent net {i} and finish it's training for comparison to clone development.
                 for _ in range(self.epochs - 1):
@@ -107,36 +110,32 @@ if __name__ == '__main__':
     ST_log_step_size = 10
 
     # Define number of networks & their architecture
-    nr_clones = 5
-    ST_population_size = 2
+    nr_clones = 8
+    ST_population_size = 3
     ST_net_hidden_size = 2
     ST_net_learning_rate = 0.04
     ST_name_hash = random.getrandbits(32)
 
     print(f"Running the Spawn experiment:")
-    exp_list = []
-    for noise_factor in range(2, 5):
-        exp = SpawnExperiment(
-            population_size=ST_population_size,
-            log_step_size=ST_log_step_size,
-            net_input_size=NET_INPUT_SIZE,
-            net_hidden_size=ST_net_hidden_size,
-            net_out_size=NET_OUT_SIZE,
-            net_learning_rate=ST_net_learning_rate,
-            epochs=ST_epochs,
-            st_steps=ST_steps,
-            nr_clones=nr_clones,
-            noise=pow(10, -noise_factor),
-            directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}'
-        )
-        exp_list.append(exp)
+    df = SpawnLinspaceExperiment(
+        population_size=ST_population_size,
+        log_step_size=ST_log_step_size,
+        net_input_size=NET_INPUT_SIZE,
+        net_hidden_size=ST_net_hidden_size,
+        net_out_size=NET_OUT_SIZE,
+        net_learning_rate=ST_net_learning_rate,
+        epochs=ST_epochs,
+        st_steps=ST_steps,
+        nr_clones=nr_clones,
+        noise=None,
+        directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'linage'
+    ).df
 
     # Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
-    df = pd.concat([exp.df for exp in exp_list])
     sns.countplot(data=df, x="noise", hue="status_post")
     plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
 
     # Catplot (either kind="point" or "box") that shows before-after training distances to parent
     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
-    plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
\ No newline at end of file
+    plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
diff --git a/journal_basins.py b/journal_basins.py
index c921780..85bda58 100644
--- a/journal_basins.py
+++ b/journal_basins.py
@@ -124,7 +124,6 @@ class SpawnExperiment:
         # self.visualize_loss()
         self.distance_matrix = distance_matrix(self.nets, print_it=False)
         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
-
         self.save()
 
     def populate_environment(self):
@@ -243,7 +242,7 @@ if __name__ == "__main__":
 
     # Define number of networks & their architecture
     nr_clones = 5
-    ST_population_size = 1
+    ST_population_size = 2
     ST_net_hidden_size = 2
     ST_net_learning_rate = 0.04
     ST_name_hash = random.getrandbits(32)
diff --git a/visualization.py b/visualization.py
index d3544f4..1df47ae 100644
--- a/visualization.py
+++ b/visualization.py
@@ -216,7 +216,8 @@ def plot_3d_soup(nets_list, exp_name, directory: Union[str, Path]):
     # will send forward the number "1" for batch size with the variable <irrelevant_batch_size>.
     irrelevant_batch_size = 1
 
-    plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False)
+    # plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False)
+    plot_3d_self_train(nets_list, exp_name, directory, 10, True)
 
 
 def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int,