journal linspace basins
This commit is contained in:
142
journal_basin_linspace_clones.py
Normal file
142
journal_basin_linspace_clones.py
Normal file
@ -0,0 +1,142 @@
|
||||
import copy
|
||||
import itertools
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from functionalities_test import is_identity_function, test_status
|
||||
from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance
|
||||
from network import Net
|
||||
|
||||
from sklearn.metrics import mean_absolute_error as MAE
|
||||
from sklearn.metrics import mean_squared_error as MSE
|
||||
|
||||
import seaborn as sns
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
class SpawnLinspaceExperiment(SpawnExperiment):
|
||||
|
||||
def spawn_and_continue(self, number_clones: int = None):
|
||||
number_clones = number_clones or self.nr_clones
|
||||
|
||||
df = pd.DataFrame(
|
||||
columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
|
||||
'status_post'])
|
||||
|
||||
# For every initial net {i} after populating (that is fixpoint after first epoch);
|
||||
pairwise_net_list = itertools.permutations(self.nets, 2)
|
||||
for net1, net2 in pairwise_net_list:
|
||||
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
|
||||
# to see full trajectory (but the clones will be very hard to see).
|
||||
# Make one target to compare distances to clones later when they have trained.
|
||||
net1.start_time = self.ST_steps - 150
|
||||
net1_input_data = net1.input_weight_matrix()
|
||||
net1_target_data = net1.create_target_weights(net1_input_data)
|
||||
|
||||
net2.start_time = self.ST_steps - 150
|
||||
net2_input_data = net2.input_weight_matrix()
|
||||
net2_target_data = net2.create_target_weights(net2_input_data)
|
||||
|
||||
if is_identity_function(net1) and is_identity_function(net2):
|
||||
# Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly;
|
||||
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
||||
# To make sure PCA will plot the same trajectory up until this point, we clone the
|
||||
# parent-net's weight history as well.
|
||||
in_between_weights = np.linspace(net2_target_data, net2_target_data, number_clones)
|
||||
|
||||
for in_between_weight in in_between_weights:
|
||||
clone = Net(net1.input_size, net1.hidden_size, net1.out_size, start_time=self.ST_steps)
|
||||
clone.apply_weights(in_between_weight)
|
||||
|
||||
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
|
||||
clone.number_trained = copy.deepcopy(net1.number_trained)
|
||||
|
||||
# Pre Training distances (after noise application of course)
|
||||
clone_pre_weights = clone.create_target_weights(clone.input_weight_matrix())
|
||||
MAE_pre = MAE(net1_target_data, clone_pre_weights)
|
||||
MSE_pre = MSE(net1_target_data, clone_pre_weights)
|
||||
MIM_pre = mean_invariate_manhattan_distance(net1_target_data, clone_pre_weights)
|
||||
|
||||
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) ..
|
||||
for _ in range(self.epochs - 1):
|
||||
for _ in range(self.ST_steps):
|
||||
clone.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
# Post Training distances for comparison
|
||||
clone_post_weights = clone.create_target_weights(clone.input_weight_matrix())
|
||||
MAE_post = MAE(net1_target_data, clone_post_weights)
|
||||
MSE_post = MSE(net1_target_data, clone_post_weights)
|
||||
MIM_post = mean_invariate_manhattan_distance(net1_target_data, clone_post_weights)
|
||||
|
||||
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
||||
test_status(clone)
|
||||
if is_identity_function(clone):
|
||||
#print(f"Clone {j} (of net_{i}) is fixpoint."
|
||||
# f"\nMSE({i},{j}): {MSE_post}"
|
||||
# f"\nMAE({i},{j}): {MAE_post}"
|
||||
# f"\nMIM({i},{j}): {MIM_post}\n")
|
||||
self.nets.append(clone)
|
||||
|
||||
df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
|
||||
clone.is_fixpoint]
|
||||
|
||||
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
||||
for _ in range(self.epochs - 1):
|
||||
for _ in range(self.ST_steps):
|
||||
net1.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
net_weights_after = net1.create_target_weights(net1.input_weight_matrix())
|
||||
print(f"Parent net's distance to original position."
|
||||
f"\nMSE(OG,new): {MAE(net1_target_data, net_weights_after)}"
|
||||
f"\nMAE(OG,new): {MSE(net1_target_data, net_weights_after)}"
|
||||
f"\nMIM(OG,new): {mean_invariate_manhattan_distance(net1_target_data, net_weights_after)}\n")
|
||||
|
||||
self.df = df
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NET_INPUT_SIZE = 4
|
||||
NET_OUT_SIZE = 1
|
||||
|
||||
# Define number of runs & name:
|
||||
ST_runs = 1
|
||||
ST_runs_name = "test-27"
|
||||
ST_steps = 2000
|
||||
ST_epochs = 2
|
||||
ST_log_step_size = 10
|
||||
|
||||
# Define number of networks & their architecture
|
||||
nr_clones = 5
|
||||
ST_population_size = 2
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
|
||||
print(f"Running the Spawn experiment:")
|
||||
exp_list = []
|
||||
for noise_factor in range(2, 5):
|
||||
exp = SpawnExperiment(
|
||||
population_size=ST_population_size,
|
||||
log_step_size=ST_log_step_size,
|
||||
net_input_size=NET_INPUT_SIZE,
|
||||
net_hidden_size=ST_net_hidden_size,
|
||||
net_out_size=NET_OUT_SIZE,
|
||||
net_learning_rate=ST_net_learning_rate,
|
||||
epochs=ST_epochs,
|
||||
st_steps=ST_steps,
|
||||
nr_clones=nr_clones,
|
||||
noise=pow(10, -noise_factor),
|
||||
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}'
|
||||
)
|
||||
exp_list.append(exp)
|
||||
|
||||
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
|
||||
df = pd.concat([exp.df for exp in exp_list])
|
||||
sns.countplot(data=df, x="noise", hue="status_post")
|
||||
plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
|
||||
|
||||
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
|
||||
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
|
||||
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
|
||||
plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
|
@ -1,8 +1,6 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
from torch import mean
|
||||
|
||||
from tqdm import tqdm
|
||||
import random
|
||||
import copy
|
||||
@ -17,11 +15,9 @@ import pandas as pd
|
||||
import seaborn as sns
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
|
||||
def l1(tup):
|
||||
a, b = tup
|
||||
return abs(a - b)
|
||||
|
@ -126,7 +126,8 @@ class RobustnessComparisonExperiment:
|
||||
# This checks wether to use synthetic setting with multiple seeds
|
||||
# or multi network settings with a singlee seed
|
||||
|
||||
df = pd.DataFrame(columns=['setting', 'noise_level', 'steps', 'absolute_loss', 'time_to_vergence', 'time_as_fixpoint'])
|
||||
df = pd.DataFrame(columns=['setting', 'Noise Level', 'steps', 'absolute_loss',
|
||||
'time_to_vergence', 'time_as_fixpoint'])
|
||||
with tqdm(total=max(len(self.id_functions), seeds)) as pbar:
|
||||
for i, fixpoint in enumerate(self.id_functions): # 1 / n
|
||||
row_headers.append(fixpoint.name)
|
||||
@ -160,21 +161,22 @@ class RobustnessComparisonExperiment:
|
||||
# When this raises a Type Error, we found a second order fixpoint!
|
||||
steps += 1
|
||||
|
||||
df.loc[df.shape[0]] = [setting, noise_level, steps, absolute_loss,
|
||||
df.loc[df.shape[0]] = [setting, f'10e-{noise_level}', steps, absolute_loss,
|
||||
time_to_vergence[setting][noise_level],
|
||||
time_as_fixpoint[setting][noise_level]]
|
||||
pbar.update(1)
|
||||
|
||||
# Get the measuremts at the highest time_time_to_vergence
|
||||
df_sorted = df.sort_values('steps', ascending=False).drop_duplicates(['setting', 'noise_level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'noise_level', 'steps'],
|
||||
value_vars=['time_to_vergence', 'time_as_fixpoint'],
|
||||
df_sorted = df.sort_values('Steps', ascending=False).drop_duplicates(['setting', 'Noise Level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'Noise Level', 'Steps'],
|
||||
value_vars=['Time to vergence', 'Time as fixpoint'],
|
||||
var_name="Measurement",
|
||||
value_name="Steps")
|
||||
# Plotting
|
||||
sns.set(style='whitegrid')
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='noise_level', hue='Measurement', palette=PALETTE)
|
||||
bf.set_title('Robustness as self application steps per noise level')
|
||||
sns.set(style='whitegrid', font_scale=2)
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='Noise Level', hue='Measurement', palette=PALETTE)
|
||||
synthetic = 'synthetic' if self.is_synthetic else 'natural'
|
||||
bf.set_title(f'Robustness as self application steps per noise level for {synthetic} fixpoints.')
|
||||
plt.tight_layout()
|
||||
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
@ -221,9 +223,9 @@ if __name__ == "__main__":
|
||||
ST_steps = 1000
|
||||
ST_epochs = 5
|
||||
ST_log_step_size = 10
|
||||
ST_population_size = 100
|
||||
ST_population_size = 2
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_net_learning_rate = 0.004
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
ST_synthetic = True
|
||||
|
||||
|
Reference in New Issue
Block a user