Added before-after-plot.
This commit is contained in:
		| @@ -146,7 +146,7 @@ class SpawnExperiment: | ||||
|         number_clones = number_clones or self.nr_clones | ||||
|  | ||||
|         df = pd.DataFrame( | ||||
|             columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|             columns=['name', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise', | ||||
|                      'status_post']) | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
| @@ -201,8 +201,7 @@ class SpawnExperiment: | ||||
|                               f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                         self.nets.append(clone) | ||||
|  | ||||
|                     df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                           clone.is_fixpoint] | ||||
|                     df.loc[clone.name] = [clone.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, clone.is_fixpoint] | ||||
|  | ||||
|                 # Finally take parent net {i} and finish it's training for comparison to clone development. | ||||
|                 for _ in range(self.epochs - 1): | ||||
| @@ -252,7 +251,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     print(f"Running the Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2, 5): | ||||
|     for noise_factor in range(2, 4): | ||||
|         exp = SpawnExperiment( | ||||
|             population_size=ST_population_size, | ||||
|             log_step_size=ST_log_step_size, | ||||
| @@ -277,3 +276,9 @@ if __name__ == "__main__": | ||||
|     mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance') | ||||
|     sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False) | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png") | ||||
|  | ||||
|     mlt = df.melt(id_vars=["name", "noise"], value_vars=["MAE_pre", "MAE_post"], var_name="State", value_name="Distance") | ||||
|     ax = sns.catplot(data=mlt, x="State", y="Distance", col="noise", hue="name", kind="point", sharey=False, palette="Greens", legend=False) | ||||
|     ax.map(sns.boxplot, "State", "Distance", "noise", linewidth=0.8, order=["MAE_pre", "MAE_post"]) | ||||
|     plt.savefig(f"output/spawn_basin/{ST_name_hash}/before_after_distance_catplot.png") | ||||
|  | ||||
|   | ||||
| @@ -300,7 +300,7 @@ if __name__ == "__main__": | ||||
|     # Define number of runs & name: | ||||
|     ST_runs = 1 | ||||
|     ST_runs_name = "test-27" | ||||
|     soup_ST_steps = 1500 | ||||
|     soup_ST_steps = 2500 | ||||
|     soup_epochs = 2 | ||||
|     soup_log_step_size = 10 | ||||
|  | ||||
| @@ -314,7 +314,7 @@ if __name__ == "__main__": | ||||
|  | ||||
|     print(f"Running the Soup-Spawn experiment:") | ||||
|     exp_list = [] | ||||
|     for noise_factor in range(2, 5): | ||||
|     for noise_factor in range(2, 3): | ||||
|         exp = SoupSpawnExperiment( | ||||
|             population_size=soup_population_size, | ||||
|             log_step_size=soup_log_step_size, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Maximilian Zorn
					Maximilian Zorn