Si11ium 4a81279b58 Refactor:
Step 4 - Aggregating Neural Networks
Step 5 - Training Neural Networks
2019-06-14 09:55:51 +02:00

172 lines
5.9 KiB
Python

import os
import time
import dill
from tqdm import tqdm
import copy
from tensorflow.python.keras import backend as K
from abc import ABC, abstractmethod
class Experiment(ABC):
@staticmethod
def from_dill(path):
with open(path, "rb") as dill_file:
return dill.load(dill_file)
@staticmethod
def reset_model():
K.clear_session()
def __init__(self, name=None, ident=None):
self.experiment_id = f'{ident or ""}_{time.time()}'
self.experiment_name = name or 'unnamed_experiment'
self.next_iteration = 0
self.log_messages = list()
self.historical_particles = dict()
def __enter__(self):
self.dir = os.path.join('experiments', f'exp-{self.experiment_name}-{self.experiment_id}-{self.next_iteration}')
os.makedirs(self.dir)
print(f'** created {self.dir} **')
return self
def __exit__(self, exc_type, exc_value, traceback):
self.save(experiment=self.without_particles())
self.save_log()
self.next_iteration += 1
def log(self, message, **kwargs):
self.log_messages.append(message)
print(message, **kwargs)
def save_log(self, log_name="log"):
with open(os.path.join(self.dir, f"{log_name}.txt"), "w") as log_file:
for log_message in self.log_messages:
print(str(log_message), file=log_file)
def __copy__(self):
self_copy = self.__class__(name=self.experiment_name,)
self_copy.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
attr not in ['particles', 'historical_particles']}
return self_copy
def without_particles(self):
self_copy = copy.copy(self)
# self_copy.particles = [particle.states for particle in self.particles]
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
return self_copy
def save(self, **kwargs):
for name, value in kwargs.items():
with open(os.path.join(self.dir, f"{name}.dill"), "wb") as dill_file:
dill.dump(value, dill_file)
@abstractmethod
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
raise NotImplementedError
pass
def run_exp(self, network_generator, exp_iterations, prints=False, **kwargs):
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
for run_id in range(exp_iterations):
network = network_generator()
self.run_net(network, 100, run_id=run_id + 1, **kwargs)
self.historical_particles[run_id] = network
if prints:
print("Fixpoint? " + str(network.is_fixpoint()))
self.reset_model()
def reset_all(self):
self.reset_model()
class FixpointExperiment(Experiment):
if kwargs.get('logging', False):
self.log(self.counters)
def __init__(self, **kwargs):
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super().__init__(**kwargs)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
i += 1
if run_id:
net.save_state(time=i)
self.count(net)
def count(self, net):
if net.is_diverged():
self.counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
self.counters['fix_zero'] += 1
else:
self.counters['fix_other'] += 1
self.interesting_fixpoints.append(net.get_weights())
elif net.is_fixpoint(2):
self.counters['fix_sec'] += 1
else:
self.counters['other'] += 1
def reset_counters(self):
for key in self.counters.keys():
self.counters[key] = 0
return True
def reset_all(self):
super(FixpointExperiment, self).reset_all()
self.reset_counters()
class MixedFixpointExperiment(FixpointExperiment):
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
for i in range(step_limit):
if net.is_diverged() or net.is_fixpoint():
break
net.self_attack()
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
for _ in range(trains_per_application):
loss = net.compiled().train()
bar.postfix[1]["value"] = loss
bar.update()
if run_id:
net.save_state()
self.count(net)
class SoupExperiment(Experiment):
def __init__(self, **kwargs):
super(SoupExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
def run_exp(self, network_generator, exp_iterations, soup_generator=None, soup_iterations=0, prints=False):
for i in range(soup_iterations):
soup = soup_generator()
soup.seed()
for _ in tqdm(exp_iterations):
soup.evolve()
self.log(soup.count())
self.save(soup=soup.without_particles())
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
raise NotImplementedError
pass
class IdentLearningExperiment(Experiment):
def __init__(self):
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
pass