debugged journal_soup_basin experiment
This commit is contained in:
		| @@ -79,6 +79,7 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None): | ||||
| def changing_rate(x_new, x_old): | ||||
|     return x_new - x_old | ||||
|  | ||||
|  | ||||
| def test_status(net: Net) -> Net: | ||||
|  | ||||
|     if is_divergent(net): | ||||
|   | ||||
| @@ -6,7 +6,7 @@ from torch import mean | ||||
| from tqdm import tqdm | ||||
| import random | ||||
| import copy | ||||
| from functionalities_test import is_identity_function, test_status, test_for_fixpoints | ||||
| from functionalities_test import is_identity_function, test_status, test_for_fixpoints, is_zero_fixpoint, is_divergent, is_secondary_fixpoint | ||||
| from network import Net | ||||
| from visualization import plot_3d_self_train, plot_loss, plot_3d_soup | ||||
| import numpy as np | ||||
| @@ -123,17 +123,22 @@ class SoupSpawnExperiment: | ||||
|         self.directory.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|         # Populating environment & evolving entities | ||||
|         self.nets = [] | ||||
|         self.id_functions = [] | ||||
|         self.clone_soup = [] | ||||
|         self.parents = [] | ||||
|         self.clones = [] | ||||
|         self.parents_with_clones = [] | ||||
|         self.parents_clones_id_functions = [] | ||||
|  | ||||
|         self.populate_environment() | ||||
|  | ||||
|         self.spawn_and_continue() | ||||
|         self.weights_evolution_3d_experiment(self.nets, "parents") | ||||
|         self.weights_evolution_3d_experiment(self.clone_soup, "clones") | ||||
|         self.weights_evolution_3d_experiment(self.parents, "only_parents") | ||||
|         self.weights_evolution_3d_experiment(self.clones, "only_clones") | ||||
|         self.weights_evolution_3d_experiment(self.parents_with_clones, "parents_with_clones") | ||||
|         self.weights_evolution_3d_experiment(self.parents_clones_id_functions, "id_f_with_parents") | ||||
|  | ||||
|         # self.visualize_loss() | ||||
|         self.distance_matrix = distance_matrix(self.nets, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.nets, print_it=False) | ||||
|         self.distance_matrix = distance_matrix(self.parents_clones_id_functions, print_it=False) | ||||
|         self.parent_clone_distances = distance_from_parent(self.parents_clones_id_functions, print_it=False) | ||||
|  | ||||
|         self.save() | ||||
|  | ||||
| @@ -148,10 +153,21 @@ class SoupSpawnExperiment: | ||||
|             for _ in range(self.ST_steps): | ||||
|                 net.self_train(1, self.log_step_size, self.net_learning_rate) | ||||
|  | ||||
|             self.nets.append(net) | ||||
|             self.parents.append(net) | ||||
|             self.parents_with_clones.append(net) | ||||
|  | ||||
|             if is_identity_function(net): | ||||
|                 self.id_functions.append(net) | ||||
|                 self.parents_clones_id_functions.append(net) | ||||
|                 print(f"\nNet {net.name} is identity function") | ||||
|  | ||||
|             if is_divergent(net): | ||||
|                 print(f"\nNet {net.name} is divergent") | ||||
|  | ||||
|             if is_zero_fixpoint(net): | ||||
|                 print(f"\nNet {net.name} is zero fixpoint") | ||||
|  | ||||
|             if is_secondary_fixpoint(net): | ||||
|                 print(f"\nNet {net.name} is secondary fixpoint") | ||||
|  | ||||
|     def evolve(self, population): | ||||
|         print(f"Clone soup has a population of {len(population)} networks") | ||||
| @@ -185,8 +201,8 @@ class SoupSpawnExperiment: | ||||
|         # MAE_pre, MSE_pre, MIM_pre = 0, 0, 0 | ||||
|  | ||||
|         # For every initial net {i} after populating (that is fixpoint after first epoch); | ||||
|         for i in range(len(self.id_functions)): | ||||
|             net = self.nets[i] | ||||
|         for i in range(len(self.parents)): | ||||
|             net = self.parents[i] | ||||
|             # We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to | ||||
|             # to see full trajectory (but the clones will be very hard to see). | ||||
|             # Make one target to compare distances to clones later when they have trained. | ||||
| @@ -194,7 +210,7 @@ class SoupSpawnExperiment: | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|  | ||||
|             print(f"\nNet {i} is fixpoint") | ||||
|             # print(f"\nNet {i} is fixpoint") | ||||
|  | ||||
|             # Clone the fixpoint x times and add (+-)self.noise to weight-sets randomly; | ||||
|             # To plot clones starting after first epoch (z=ST_steps), set that as start_time! | ||||
| @@ -216,12 +232,15 @@ class SoupSpawnExperiment: | ||||
|                 MIM_pre = mean_invariate_manhattan_distance(net_target_data, clone_pre_weights) | ||||
|  | ||||
|                 net.children.append(clone) | ||||
|                 self.clone_soup.append(clone) | ||||
|                 self.clones.append(clone) | ||||
|                 self.parents_with_clones.append(clone) | ||||
|  | ||||
|         self.evolve(self.clone_soup) | ||||
|         self.evolve(self.clones) | ||||
|         # evolve also with the parents together | ||||
|         # self.evolve(self.parents_with_clones) | ||||
|  | ||||
|         for i in range(len(self.id_functions)): | ||||
|             net = self.nets[i] | ||||
|         for i in range(len(self.parents)): | ||||
|             net = self.parents[i] | ||||
|             net_input_data = net.input_weight_matrix() | ||||
|             net_target_data = net.create_target_weights(net_input_data) | ||||
|  | ||||
| @@ -234,14 +253,14 @@ class SoupSpawnExperiment: | ||||
|                 MSE_post = MSE(net_target_data, clone_post_weights) | ||||
|                 MIM_post = mean_invariate_manhattan_distance(net_target_data, clone_post_weights) | ||||
|  | ||||
|             # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                 # .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves. | ||||
|                 test_status(clone) | ||||
|                 if is_identity_function(clone): | ||||
|                     print(f"Clone {j} (of net_{i}) is fixpoint." | ||||
|                           f"\nMSE({i},{j}): {MSE_post}" | ||||
|                           f"\nMAE({i},{j}): {MAE_post}" | ||||
|                           f"\nMIM({i},{j}): {MIM_post}\n") | ||||
|                     self.nets.append(clone) | ||||
|                     self.parents_clones_id_functions.append(clone) | ||||
|  | ||||
|                 df.loc[clone.name] = [net.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise, | ||||
|                                       clone.is_fixpoint] | ||||
| @@ -259,12 +278,12 @@ class SoupSpawnExperiment: | ||||
|         self.df = df | ||||
|  | ||||
|     def weights_evolution_3d_experiment(self, nets_population, suffix): | ||||
|         exp_name = f"soup_basins_{str(len(self.nets))}_nets_3d_weights_PCA_{suffix}" | ||||
|         exp_name = f"soup_basins_{str(len(nets_population))}_nets_3d_weights_PCA_{suffix}" | ||||
|         return plot_3d_soup(nets_population, exp_name, self.directory) | ||||
|  | ||||
|     def visualize_loss(self): | ||||
|         for i in range(len(self.nets)): | ||||
|             net_loss_history = self.nets[i].loss_history | ||||
|         for i in range(len(self.parents)): | ||||
|             net_loss_history = self.parents[i].loss_history | ||||
|             self.loss_history.append(net_loss_history) | ||||
|         plot_loss(self.loss_history, self.directory) | ||||
|  | ||||
| @@ -286,7 +305,7 @@ if __name__ == "__main__": | ||||
|     soup_log_step_size = 10 | ||||
|  | ||||
|     # Define number of networks & their architecture | ||||
|     nr_clones = 2 | ||||
|     nr_clones = 3 | ||||
|     soup_population_size = 2 | ||||
|     soup_net_hidden_size = 2 | ||||
|     soup_net_learning_rate = 0.04 | ||||
|   | ||||
| @@ -133,7 +133,7 @@ def plot_3d(matrices_weights_history, directory: Union[str, Path], population_si | ||||
|                 ydata.append(weight_matrix_pca[j][1]) | ||||
|             zdata = np.arange(start_time, len(ydata)*batch_size+start_time, batch_size) | ||||
|  | ||||
|             ax.plot3D(xdata, ydata, zdata, label=f"net {i}") | ||||
|             ax.plot3D(xdata, ydata, zdata, label=f"net {i}", c="b") | ||||
|             if "parent" in nets_array[i].name: | ||||
|                 ax.scatter(np.asarray(xdata), np.asarray(ydata), zdata, s=3, c="b") | ||||
|             else: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 ru43zex
					ru43zex