in between plots

This commit is contained in:
steffen-illium 2021-06-28 10:51:21 +02:00
parent 6c2d544f7c
commit b22a7ac427

View File

@ -6,6 +6,7 @@ import pickle
import pandas as pd
import numpy as np
import torch
from sklearn import preprocessing
from functionalities_test import is_identity_function, test_status
from journal_basins import SpawnExperiment, mean_invariate_manhattan_distance
@ -21,8 +22,8 @@ class SpawnLinspaceExperiment(SpawnExperiment):
number_clones = number_clones or self.nr_clones
df = pd.DataFrame(
columns=['parent', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
'status_post'])
columns=['clone', 'parent', 'parent2', 'MAE_pre', 'MAE_post', 'MSE_pre', 'MSE_post', 'MIM_pre', 'MIM_post', 'noise',
'status_pst'])
# For every initial net {i} after populating (that is fixpoint after first epoch);
# parent = self.parents[0]
@ -31,7 +32,7 @@ class SpawnLinspaceExperiment(SpawnExperiment):
# parent_clone.apply_weights(torch.as_tensor(parent.create_target_weights(parent.input_weight_matrix())))
# parent_clone = parent_clone.apply_noise(self.noise)
# self.parents.append(parent_clone)
pairwise_net_list = itertools.combinations(self.parents, 2)
pairwise_net_list = list(itertools.combinations(self.parents, 2))
for net1, net2 in pairwise_net_list:
# We set parent start_time to just before this epoch ended, so plotting is zoomed in. Comment out to
# to see full trajectory (but the clones will be very hard to see).
@ -50,12 +51,13 @@ class SpawnLinspaceExperiment(SpawnExperiment):
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
# To make sure PCA will plot the same trajectory up until this point, we clone the
# parent-net's weight history as well.
# in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
in_between_weights = np.logspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
# in_between_weights = np.logspace(net1_target_data, net2_target_data, number_clones, endpoint=False)
for j, in_between_weight in enumerate(in_between_weights):
clone = Net(net1.input_size, net1.hidden_size, net1.out_size,
name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps + 100)
name=f"{net1.name}_{net2.name}_clone_{str(j)}", start_time=self.ST_steps + 100)
clone.apply_weights(torch.as_tensor(in_between_weight))
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
@ -67,10 +69,16 @@ class SpawnLinspaceExperiment(SpawnExperiment):
MSE_pre = MSE(net1_target_data, clone_pre_weights)
MIM_pre = mean_invariate_manhattan_distance(net1_target_data, clone_pre_weights)
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) ..
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
clone.self_train(1, self.log_step_size, self.net_learning_rate)
try:
# Then finish training each clone {j} (for remaining epoch-1 * ST_steps) ..
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
clone.self_train(1, self.log_step_size, self.net_learning_rate)
if any([torch.isnan(x).any() for x in clone.parameters()]):
raise ValueError
except ValueError:
print("Ran into nan in 'in beetween weights' array.")
continue
# Post Training distances for comparison
clone_post_weights = clone.create_target_weights(clone.input_weight_matrix())
@ -81,15 +89,22 @@ class SpawnLinspaceExperiment(SpawnExperiment):
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
test_status(clone)
if is_identity_function(clone):
print(f"Clone {j} (of net_{net1.name}) is fixpoint."
print(f"Clone {j} (between {net1.name} and {net2.name}) is fixpoint."
f"\nMSE({net1.name},{j}): {MSE_post}"
f"\nMAE({net1.name},{j}): {MAE_post}"
f"\nMIM({net1.name},{j}): {MIM_post}\n")
self.nets.append(clone)
df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post,
df.loc[len(df)] = [j, net1.name, net2.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post,
self.noise, clone.is_fixpoint]
for net1, net2 in pairwise_net_list:
value = 'MAE'
c_selector = [f'{value}_pre', f'{value}_post']
values = df.loc[(df['parent'] == net1.name) & (df['parent2'] == net2.name)][c_selector]
this_min, this_max = values.values.min(), values.values.max()
df.loc[(df['parent'] == net1.name) &
(df['parent2'] == net2.name), c_selector] = (values - this_min) / (this_max - this_min)
for parent in self.parents:
for _ in range(self.epochs - 1):
for _ in range(self.ST_steps):
@ -110,8 +125,8 @@ if __name__ == '__main__':
ST_log_step_size = 10
# Define number of networks & their architecture
nr_clones = 100
ST_population_size = 2
nr_clones = 25
ST_population_size = 10
ST_net_hidden_size = 2
ST_net_learning_rate = 0.04
ST_name_hash = random.getrandbits(32)
@ -147,26 +162,26 @@ if __name__ == '__main__':
# Pointplot with pre and after parent Distances
import seaborn as sns
from matplotlib import pyplot as plt
from matplotlib import pyplot as plt, ticker
# ptplt = sns.pointplot(data=exp.df, x='MAE_pre', y='MAE_post', join=False)
ptplt = sns.pointplot(data=exp.df, x='MIM_pre', y='MIM_post', join=False)
ptplt.set(xscale='log', yscale='log')
ptplt = sns.scatterplot(x=exp.df['MAE_pre'], y=exp.df['MAE_post'])
# ptplt.set(xscale='log', yscale='log')
x0, x1 = ptplt.axes.get_xlim()
y0, y1 = ptplt.axes.get_ylim()
lims = [max(x0, y0), min(x1, y1)]
# This is the x=y line using transforms
ptplt.plot(lims, lims, 'w', linestyle='dashdot', transform=ptplt.axes.transData)
ptplt.plot([0, 1], [0, 1], ':k', transform=ptplt.axes.transAxes)
ptplt.set(xlabel='Invariant Manhattan Distance befor Training',
ylabel='Invariant Manhattan Distance after Training')
plt.xticks(rotation=45)
for ind, label in enumerate(ptplt.get_xticklabels()):
if ind % 10 == 0: # every 10th label is kept
label.set_visible(True)
label.set_text(round(float(label.get_text()), 3))
else:
label.set_visible(False)
ptplt.set(xlabel='Mean Absolute Distance before Self-Training',
ylabel='Mean Absolute Distance after Self-Training')
# ptplt.axes.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: round(float(x), 2)))
# ptplt.xticks(rotation=45)
#for ind, label in enumerate(ptplt.get_xticklabels()):
# if ind % 10 == 0: # every 10th label is kept
# label.set_visible(True)
# else:
# label.set_visible(False)
filepath = exp.directory / 'mim_dist_plot.png'
plt.tight_layout()