Fixed the Model classes, Visualization

This commit is contained in:
Si11ium 2019-08-23 13:10:47 +02:00
parent 0e879bfdb1
commit 7b0b96eaa3
16 changed files with 141 additions and 469 deletions

View File

@ -1,16 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/data" />
</content>
<orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="renderExternalDocumentation" value="true" />
</component>
<component name="TestRunnerService">
<option name="PROJECT_TEST_RUNNER" value="Unittests" />
</component>
</module>

View File

@ -1,9 +0,0 @@
<component name="ProjectDictionaryState">
<dictionary name="illium">
<words>
<w>dataloader</w>
<w>datasets</w>
<w>isovists</w>
</words>
</dictionary>
</component>

View File

@ -1,5 +0,0 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="PROJECT_PROFILE" />
</settings>
</component>

7
.idea/misc.xml generated
View File

@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="JavaScriptSettings">
<option name="languageLevel" value="ES6" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (torch)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml generated
View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" filepath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" />
</modules>
</component>
</project>

7
.idea/other.xml generated
View File

@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PySciProjectComponent">
<option name="PY_SCI_VIEW" value="true" />
<option name="PY_SCI_VIEW_SUGGESTED" value="true" />
</component>
</project>

6
.idea/vcs.xml generated
View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

284
.idea/workspace.xml generated
View File

@ -1,284 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ChangeListManager">
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript">
<change beforePath="$PROJECT_DIR$/.gitignore" beforeDir="false" afterPath="$PROJECT_DIR$/.gitignore" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
</list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="FileTemplateManagerImpl">
<option name="RECENT_TEMPLATES">
<list>
<option value="Python Script" />
</list>
</option>
</component>
<component name="Git.Settings">
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="ProjectId" id="1Omeu5sz43kySmz8qHfWIcA2dn0" />
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
<component name="PropertiesComponent">
<property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
<property name="WebServerToolWindowFactoryState" value="false" />
<property name="last_opened_file_path" value="$PROJECT_DIR$/networks" />
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
<property name="settings.editor.selected.configurable" value="pyconsole" />
</component>
<component name="PyConsoleOptionsProvider">
<option name="myPythonConsoleState">
<console-settings module-name="ae_toolbox_torch" is-module-sdk="true">
<option name="myUseModuleSdk" value="true" />
<option name="myModuleName" value="ae_toolbox_torch" />
</console-settings>
</option>
<option name="myShowDebugConsoleByDefault" value="true" />
</component>
<component name="RecentsManager">
<key name="CopyFile.RECENT_KEYS">
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\networks" />
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\viz" />
</key>
<key name="MoveFile.RECENT_KEYS">
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\data\processed" />
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch" />
</key>
</component>
<component name="RunDashboard">
<option name="ruleStates">
<list>
<RuleState>
<option name="name" value="ConfigurationTypeDashboardGroupingRule" />
</RuleState>
<RuleState>
<option name="name" value="StatusDashboardGroupingRule" />
</RuleState>
</list>
</option>
</component>
<component name="RunManager" selected="Python.viz_latent">
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
<module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="" />
<option name="IS_MODULE_SDK" value="false" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="run_basic_ae" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\run_models.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="run_models" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/run_models.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="viz_latent" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/viz" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/viz/viz_latent.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<list>
<item itemvalue="Python.run_basic_ae" />
<item itemvalue="Python.run_models" />
<item itemvalue="Python.viz_latent" />
</list>
<recent_temporary>
<list>
<item itemvalue="Python.viz_latent" />
<item itemvalue="Python.run_models" />
<item itemvalue="Python.run_basic_ae" />
</list>
</recent_temporary>
</component>
<component name="SvnConfiguration">
<configuration />
</component>
<component name="TaskManager">
<task active="true" id="Default" summary="Default task">
<changelist id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="" />
<created>1564587418949</created>
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1564587418949</updated>
<workItem from="1564587420277" duration="6891000" />
<workItem from="1565364574595" duration="1092000" />
<workItem from="1565592214301" duration="53660000" />
<workItem from="1565793671730" duration="53351000" />
<workItem from="1566372837067" duration="28318000" />
</task>
<task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
<created>1565793753423</created>
<option name="number" value="00001" />
<option name="presentableId" value="LOCAL-00001" />
<option name="project" value="LOCAL" />
<updated>1565793753423</updated>
</task>
<task id="LOCAL-00002" summary="Lightning integration basic ae, dataloaders and dataset">
<created>1565958589041</created>
<option name="number" value="00002" />
<option name="presentableId" value="LOCAL-00002" />
<option name="project" value="LOCAL" />
<updated>1565958589041</updated>
</task>
<task id="LOCAL-00003" summary="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized">
<created>1565987964760</created>
<option name="number" value="00003" />
<option name="presentableId" value="LOCAL-00003" />
<option name="project" value="LOCAL" />
<updated>1565987964760</updated>
</task>
<task id="LOCAL-00004" summary="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized">
<created>1566064016196</created>
<option name="number" value="00004" />
<option name="presentableId" value="LOCAL-00004" />
<option name="project" value="LOCAL" />
<updated>1566064016196</updated>
</task>
<task id="LOCAL-00005" summary="Done: First VIsualization&#10;ToDo: Visualization for all classes, latent space setups">
<created>1566366992088</created>
<option name="number" value="00005" />
<option name="presentableId" value="LOCAL-00005" />
<option name="project" value="LOCAL" />
<updated>1566366992088</updated>
</task>
<task id="LOCAL-00006" summary="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript">
<created>1566546840536</created>
<option name="number" value="00006" />
<option name="presentableId" value="LOCAL-00006" />
<option name="project" value="LOCAL" />
<updated>1566546840536</updated>
</task>
<option name="localTasksCounter" value="7" />
<servers />
</component>
<component name="TypeScriptGeneratedFilesManager">
<option name="version" value="1" />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State>
<option name="COLUMN_ORDER" />
</State>
</value>
</entry>
</map>
</option>
</component>
<component name="VcsManagerConfiguration">
<MESSAGE value="Lightning integration basic ae, dataloaders and dataset" />
<MESSAGE value="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized" />
<MESSAGE value="Done: First VIsualization&#10;ToDo: Visualization for all classes, latent space setups" />
<MESSAGE value="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript" />
<option name="LAST_COMMIT_MESSAGE" value="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript" />
</component>
<component name="XDebuggerManager">
<breakpoint-manager>
<breakpoints>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/networks/modules.py</url>
<line>206</line>
<option name="timeStamp" value="51" />
</line-breakpoint>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/networks/seperating_adversarial_auto_encoder.py</url>
<line>23</line>
<option name="timeStamp" value="52" />
</line-breakpoint>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/viz/viz_latent.py</url>
<line>67</line>
<option name="timeStamp" value="56" />
</line-breakpoint>
</breakpoints>
<default-breakpoints>
<breakpoint type="python-exception">
<properties notifyOnlyOnFirst="true" notifyOnTerminate="true" ignoreLibraries="true" exception="BaseException">
<option name="ignoreLibraries" value="true" />
<option name="notifyOnTerminate" value="true" />
<option name="notifyOnlyOnFirst" value="true" />
</properties>
</breakpoint>
</default-breakpoints>
</breakpoint-manager>
</component>
<component name="com.intellij.coverage.CoverageDataManagerImpl">
<SUITE FILE_PATH="coverage/ae_toolbox_torch$viz_latent.coverage" NAME="viz_latent Coverage Results" MODIFIED="1566541302103" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/viz" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565937164457" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1566537126647" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
</component>
</project>

View File

@ -167,7 +167,7 @@ class Trajectories(Dataset):
dataDict = dict()
for key, val in kwargs.items():
if key in self.isovistMeasures:
dataDict[key] = torch.tensor(val)
dataDict[key] = torch.tensor(val, requires_grad=False)
# Check if all keys are of same length
assert len(set(x.size()[0] for x in dataDict.values() if torch.is_tensor(x))) <= 1
data = torch.stack([dataDict[key] for key in self.isovistMeasures], dim=-1)

View File

@ -1,7 +1,7 @@
from torch.optim import Adam
from networks.auto_encoder import AutoEncoder
from torch.nn.functional import mse_loss
from torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoid
from torch.distributions import Normal
from networks.modules import *
import torch
@ -23,14 +23,10 @@ class AdversarialAutoEncoder(AutoEncoder):
return z, x_hat
class AdversarialAELightningOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
class AdversarialAELightningOverrides(LightningModuleOverrides):
def __init__(self):
super(AdversarialAELightningOverrides, self).__init__()
def training_step(self, batch, _, optimizer_i):
if optimizer_i == 0:
@ -67,5 +63,12 @@ class AdversarialAELightningOverrides:
raise RuntimeError('This should not have happened, catch me if u can.')
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam(self.network.discriminator.parameters(), lr=0.02),
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
[]
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,3 +1,5 @@
from torch.optim import Adam
from .modules import *
from torch.nn.functional import mse_loss
from torch import Tensor
@ -26,14 +28,10 @@ class AutoEncoder(AbstractNeuralNetwork, ABC):
return z, x_hat
class AutoEncoderLightningOverrides:
class AutoEncoderLightningOverrides(LightningModuleOverrides):
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
def __init__(self):
super(AutoEncoderLightningOverrides, self).__init__()
def training_step(self, x, batch_nb):
# z, x_hat
@ -41,6 +39,9 @@ class AutoEncoderLightningOverrides:
loss = mse_loss(x, x_hat)
return {'loss': loss}
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,11 +1,34 @@
import os
import torch
import pytorch_lightning as pl
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU, AvgPool2d
from pytorch_lightning import data_loader
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
from abc import ABC, abstractmethod
#######################
# Abstract NN Class
# Abstract NN Class & Lightning Module
from torch.utils.data import DataLoader
from dataset import DataContainer
class LightningModuleOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
@data_loader
def tng_dataloader(self):
num_workers = os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step),
shuffle=True, batch_size=100, num_workers=num_workers)
class AbstractNeuralNetwork(Module):

View File

@ -1,3 +1,5 @@
from torch.optim import Adam
from networks.auto_encoder import AutoEncoder
from torch.nn.functional import mse_loss
from networks.modules import *
@ -7,16 +9,15 @@ import torch
class SeperatingAdversarialAutoEncoder(Module):
def __init__(self, latent_dim, features, **kwargs):
assert latent_dim % 2 == 0, f'Your latent space needs to be even, not odd, but was: "{latent_dim}"'
super(SeperatingAdversarialAutoEncoder, self).__init__()
self.latent_dim = latent_dim
self.features = features
self.spatial_encoder = PoolingEncoder(self.latent_dim // 2)
self.temporal_encoder = Encoder(self.latent_dim // 2)
self.spatial_encoder = PoolingEncoder(self.latent_dim)
self.temporal_encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.features)
self.spatial_discriminator = Discriminator(self.latent_dim // 2, self.features)
self.temporal_discriminator = Discriminator(self.latent_dim // 2, self.features)
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
self.temporal_discriminator = Discriminator(self.latent_dim, self.features)
def forward(self, batch):
# Encoder
@ -30,14 +31,10 @@ class SeperatingAdversarialAutoEncoder(Module):
return z_spatial, z_temporal, x_hat
class SeparatingAdversarialAELightningOverrides:
class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
def __init__(self):
super(SeparatingAdversarialAELightningOverrides, self).__init__()
def training_step(self, batch, _, optimizer_i):
spatial_latent_fake, temporal_latent_fake, batch_hat = self.network.forward(batch)
@ -91,6 +88,17 @@ class SeparatingAdversarialAELightningOverrides:
else:
raise RuntimeError('This should not have happened, catch me if u can.')
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_encoder.parameters(),
*self.network.spatial_encoder.parameters(),
*self.network.decoder.parameters()]
, lr=0.02)], []
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,3 +1,5 @@
from torch.optim import Adam
from .modules import *
from torch.nn.functional import mse_loss
@ -33,14 +35,10 @@ class VariationalAutoEncoder(AbstractNeuralNetwork, ABC):
return x_hat, mu, logvar
class VariationalAutoEncoderLightningOverrides:
class VariationalAutoEncoderLightningOverrides(LightningModuleOverrides):
@property
def name(self):
return self.network.name
def forward(self, x):
return self.network.forward(x)
def __init__(self):
super(VariationalAutoEncoderLightningOverrides, self).__init__()
def training_step(self, x, _):
x_hat, logvar, mu = self.forward(x)
@ -53,6 +51,9 @@ class VariationalAutoEncoderLightningOverrides:
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return {'loss': BCE + KLD}
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,3 +1,5 @@
from torch.distributions import Normal
from networks.auto_encoder import *
import os
import time
@ -18,90 +20,54 @@ from argparse import Namespace
from argparse import ArgumentParser
args = ArgumentParser()
args.add_argument('step')
args.add_argument('features')
args.add_argument('size')
args.add_argument('latent_dim')
args.add_argument('--step', default=0)
args.add_argument('--features', default=0)
args.add_argument('--size', default=0)
args.add_argument('--latent_dim', default=0)
args.add_argument('--model', default='Model')
# ToDo: How to implement this better?
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
class Model(AutoEncoderLightningOverrides, LightningModule):
def __init__(self, latent_dim=0, size=0, step=0, features=0, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(Model, self).__init__()
self.network = AutoEncoder(self.latent_dim, self.features)
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
@property
def name(self):
return self.network.name
def __init__(self, args: Namespace, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters: Namespace, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(AdversarialModel, self).__init__()
self.normal = Normal(0, 1)
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
pass
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam(self.network.discriminator.parameters(), lr=0.02),
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
[]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
def __init__(self, args: Namespace, **kwargs):
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
self.size = args.size
self.latent_dim = args.latent_dim
self.features = args.features
self.step = args.step
def __init__(self, parameters: Namespace, **kwargs):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(SeparatingAdversarialModel, self).__init__()
self.normal = Normal(0, 1)
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
pass
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
, lr=0.02),
Adam([*self.network.temporal_encoder.parameters(),
*self.network.spatial_encoder.parameters(),
*self.network.decoder.parameters()]
, lr=0.02)], []
@data_loader
def tng_dataloader(self):
num_workers = os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100, num_workers=num_workers)
if __name__ == '__main__':
features = 6
@ -110,7 +76,7 @@ if __name__ == '__main__':
arguments = args.parse_args()
arguments.__dict__.update(tag_dict)
model = SeparatingAdversarialModel(arguments)
model = globals()[arguments.model](arguments)
# PyTorch summarywriter with a few bells and whistles
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
@ -124,7 +90,7 @@ if __name__ == '__main__':
filepath=os.path.join(outpath, 'weights.ckpt'),
save_best_only=True,
verbose=True,
monitor='tng_loss', # val_loss
monitor='val_loss', # val_loss
mode='min',
)

View File

@ -1,21 +1,17 @@
# TODO: THIS
import seaborn as sb
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
from collections import defaultdict
from tqdm import tqdm
import os
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import seaborn as sns; sns.set()
import seaborn as sns
import matplotlib.pyplot as plt
from run_models import *
sns.set()
def search_for_weights(folder):
while not os.path.exists(folder):
if len(os.path.split(folder)) >= 50:
@ -32,6 +28,8 @@ def search_for_weights(folder):
def load_and_predict(path_like_element):
if any([x.name.endswith('.png') for x in os.scandir(os.path.dirname(path_like_element))]):
return
# Define Loop to search for models and folder with visualizations
model = globals()[path_like_element.path.split(os.sep)[-3]]
@ -46,36 +44,50 @@ def load_and_predict(path_like_element):
pretrained_model.eval()
pretrained_model.freeze()
# Load the data for prediction
dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
with torch.no_grad():
# Do the inference
prediction_dict = defaultdict(list)
for i in tqdm(range(len(dataset)), total=len(dataset)):
p_X = pretrained_model(dataset[i].unsqueeze(0))
for idx in range(len(p_X) - 1):
prediction_dict[idx].append(p_X[idx])
# Load the data for prediction
dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
# Do the inference
prediction_dict = defaultdict(list)
for i in tqdm(range(len(dataset)), total=len(dataset)):
p_X = pretrained_model(dataset[i].unsqueeze(0))
for idx in range(len(p_X) - 1):
prediction_dict[idx].append(p_X[idx])
predictions = [torch.cat(prediction).detach().numpy() for prediction in prediction_dict.values()]
for prediction in predictions:
viz_latent(prediction)
for idx, prediction in enumerate(predictions):
plot, _ = viz_latent(prediction)
plot.savefig(os.path.join(os.path.dirname(path_like_element), f'latent_space_{idx}.png'))
def viz_latent(prediction):
def viz_latent(prediction, title=f'Latent Space '):
if prediction.shape[-1] <= 1:
raise ValueError('How did this happen?')
elif prediction.shape[-1] == 2:
ax = sns.scatterplot(x=prediction[:, 0], y=prediction[:, 1])
plt.show()
return ax
try:
plt.show()
except:
pass
return ax.figure, (ax)
else:
fig, axs = plt.subplots(ncols=2)
predictions_pca = PCA(n_components=2)
predictions_tsne = TSNE(n_components=2)
pca_plot = sns.scatterplot(x=predictions_pca[:, 0], y=predictions_pca[:, 1], ax=axs[0])
tsne_plot = sns.scatterplot(x=predictions_tsne[:, 0], y=predictions_tsne[:, 1], ax=axs[1])
plt.show()
return fig, axs, pca_plot, tsne_plot
plots = []
for idx, dim_reducer in enumerate([PCA, TSNE]):
predictions_reduced = dim_reducer(n_components=2).fit_transform(prediction)
plot = sns.scatterplot(x=predictions_reduced[:, 0], y=predictions_reduced[:, 1],
ax=axs[idx])
plot.set_title(dim_reducer.__name__)
plots.append(plot)
try:
plt.show()
except:
pass
return fig, (*plots, )
if __name__ == '__main__':
path = 'output'