From 7b0b96eaa3ae707274e63ccdcce61f05d02e4fa7 Mon Sep 17 00:00:00 2001
From: Si11ium <steffen.illium@ifi.lmu.de>
Date: Fri, 23 Aug 2019 13:10:47 +0200
Subject: [PATCH] Fixed the Model classes, Visualization

---
 .idea/ae_toolbox_torch.iml                    |  16 -
 .idea/dictionaries/illium.xml                 |   9 -
 .../inspectionProfiles/profiles_settings.xml  |   5 -
 .idea/misc.xml                                |   7 -
 .idea/modules.xml                             |   8 -
 .idea/other.xml                               |   7 -
 .idea/vcs.xml                                 |   6 -
 .idea/workspace.xml                           | 284 ------------------
 dataset.py                                    |   2 +-
 networks/adverserial_auto_encoder.py          |  23 +-
 networks/auto_encoder.py                      |  15 +-
 networks/modules.py                           |  27 +-
 .../seperating_adversarial_auto_encoder.py    |  32 +-
 networks/variational_auto_encoder.py          |  15 +-
 run_models.py                                 |  88 ++----
 viz/viz_latent.py                             |  66 ++--
 16 files changed, 141 insertions(+), 469 deletions(-)
 delete mode 100644 .idea/ae_toolbox_torch.iml
 delete mode 100644 .idea/dictionaries/illium.xml
 delete mode 100644 .idea/inspectionProfiles/profiles_settings.xml
 delete mode 100644 .idea/misc.xml
 delete mode 100644 .idea/modules.xml
 delete mode 100644 .idea/other.xml
 delete mode 100644 .idea/vcs.xml
 delete mode 100644 .idea/workspace.xml

diff --git a/.idea/ae_toolbox_torch.iml b/.idea/ae_toolbox_torch.iml
deleted file mode 100644
index 8159b14..0000000
--- a/.idea/ae_toolbox_torch.iml
+++ /dev/null
@@ -1,16 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<module type="PYTHON_MODULE" version="4">
-  <component name="NewModuleRootManager">
-    <content url="file://$MODULE_DIR$">
-      <excludeFolder url="file://$MODULE_DIR$/data" />
-    </content>
-    <orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
-    <orderEntry type="sourceFolder" forTests="false" />
-  </component>
-  <component name="PyDocumentationSettings">
-    <option name="renderExternalDocumentation" value="true" />
-  </component>
-  <component name="TestRunnerService">
-    <option name="PROJECT_TEST_RUNNER" value="Unittests" />
-  </component>
-</module>
\ No newline at end of file
diff --git a/.idea/dictionaries/illium.xml b/.idea/dictionaries/illium.xml
deleted file mode 100644
index 32b081c..0000000
--- a/.idea/dictionaries/illium.xml
+++ /dev/null
@@ -1,9 +0,0 @@
-<component name="ProjectDictionaryState">
-  <dictionary name="illium">
-    <words>
-      <w>dataloader</w>
-      <w>datasets</w>
-      <w>isovists</w>
-    </words>
-  </dictionary>
-</component>
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml
deleted file mode 100644
index 0eefe32..0000000
--- a/.idea/inspectionProfiles/profiles_settings.xml
+++ /dev/null
@@ -1,5 +0,0 @@
-<component name="InspectionProjectProfileManager">
-  <settings>
-    <option name="PROJECT_PROFILE" />
-  </settings>
-</component>
\ No newline at end of file
diff --git a/.idea/misc.xml b/.idea/misc.xml
deleted file mode 100644
index a663f10..0000000
--- a/.idea/misc.xml
+++ /dev/null
@@ -1,7 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<project version="4">
-  <component name="JavaScriptSettings">
-    <option name="languageLevel" value="ES6" />
-  </component>
-  <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (torch)" project-jdk-type="Python SDK" />
-</project>
\ No newline at end of file
diff --git a/.idea/modules.xml b/.idea/modules.xml
deleted file mode 100644
index fe9fbe4..0000000
--- a/.idea/modules.xml
+++ /dev/null
@@ -1,8 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<project version="4">
-  <component name="ProjectModuleManager">
-    <modules>
-      <module fileurl="file://$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" filepath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" />
-    </modules>
-  </component>
-</project>
\ No newline at end of file
diff --git a/.idea/other.xml b/.idea/other.xml
deleted file mode 100644
index 640fd80..0000000
--- a/.idea/other.xml
+++ /dev/null
@@ -1,7 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<project version="4">
-  <component name="PySciProjectComponent">
-    <option name="PY_SCI_VIEW" value="true" />
-    <option name="PY_SCI_VIEW_SUGGESTED" value="true" />
-  </component>
-</project>
\ No newline at end of file
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
deleted file mode 100644
index 94a25f7..0000000
--- a/.idea/vcs.xml
+++ /dev/null
@@ -1,6 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<project version="4">
-  <component name="VcsDirectoryMappings">
-    <mapping directory="$PROJECT_DIR$" vcs="Git" />
-  </component>
-</project>
\ No newline at end of file
diff --git a/.idea/workspace.xml b/.idea/workspace.xml
deleted file mode 100644
index 4fa74cf..0000000
--- a/.idea/workspace.xml
+++ /dev/null
@@ -1,284 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<project version="4">
-  <component name="ChangeListManager">
-    <list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript">
-      <change beforePath="$PROJECT_DIR$/.gitignore" beforeDir="false" afterPath="$PROJECT_DIR$/.gitignore" afterDir="false" />
-      <change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
-    </list>
-    <option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
-    <option name="SHOW_DIALOG" value="false" />
-    <option name="HIGHLIGHT_CONFLICTS" value="true" />
-    <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
-    <option name="LAST_RESOLUTION" value="IGNORE" />
-  </component>
-  <component name="FileTemplateManagerImpl">
-    <option name="RECENT_TEMPLATES">
-      <list>
-        <option value="Python Script" />
-      </list>
-    </option>
-  </component>
-  <component name="Git.Settings">
-    <option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
-  </component>
-  <component name="ProjectId" id="1Omeu5sz43kySmz8qHfWIcA2dn0" />
-  <component name="ProjectLevelVcsManager" settingsEditedManually="true" />
-  <component name="PropertiesComponent">
-    <property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
-    <property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
-    <property name="WebServerToolWindowFactoryState" value="false" />
-    <property name="last_opened_file_path" value="$PROJECT_DIR$/networks" />
-    <property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
-    <property name="settings.editor.selected.configurable" value="pyconsole" />
-  </component>
-  <component name="PyConsoleOptionsProvider">
-    <option name="myPythonConsoleState">
-      <console-settings module-name="ae_toolbox_torch" is-module-sdk="true">
-        <option name="myUseModuleSdk" value="true" />
-        <option name="myModuleName" value="ae_toolbox_torch" />
-      </console-settings>
-    </option>
-    <option name="myShowDebugConsoleByDefault" value="true" />
-  </component>
-  <component name="RecentsManager">
-    <key name="CopyFile.RECENT_KEYS">
-      <recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\networks" />
-      <recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\viz" />
-    </key>
-    <key name="MoveFile.RECENT_KEYS">
-      <recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\data\processed" />
-      <recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch" />
-    </key>
-  </component>
-  <component name="RunDashboard">
-    <option name="ruleStates">
-      <list>
-        <RuleState>
-          <option name="name" value="ConfigurationTypeDashboardGroupingRule" />
-        </RuleState>
-        <RuleState>
-          <option name="name" value="StatusDashboardGroupingRule" />
-        </RuleState>
-      </list>
-    </option>
-  </component>
-  <component name="RunManager" selected="Python.viz_latent">
-    <configuration default="true" type="PythonConfigurationType" factoryName="Python">
-      <module name="ae_toolbox_torch" />
-      <option name="INTERPRETER_OPTIONS" value="" />
-      <option name="PARENT_ENVS" value="true" />
-      <envs>
-        <env name="PYTHONUNBUFFERED" value="1" />
-      </envs>
-      <option name="SDK_HOME" value="" />
-      <option name="WORKING_DIRECTORY" value="" />
-      <option name="IS_MODULE_SDK" value="false" />
-      <option name="ADD_CONTENT_ROOTS" value="true" />
-      <option name="ADD_SOURCE_ROOTS" value="true" />
-      <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
-      <option name="SCRIPT_NAME" value="" />
-      <option name="PARAMETERS" value="" />
-      <option name="SHOW_COMMAND_LINE" value="true" />
-      <option name="EMULATE_TERMINAL" value="false" />
-      <option name="MODULE_MODE" value="false" />
-      <option name="REDIRECT_INPUT" value="false" />
-      <option name="INPUT_FILE" value="" />
-      <method v="2" />
-    </configuration>
-    <configuration name="run_basic_ae" type="PythonConfigurationType" factoryName="Python" temporary="true">
-      <module name="ae_toolbox_torch" />
-      <option name="INTERPRETER_OPTIONS" value="" />
-      <option name="PARENT_ENVS" value="true" />
-      <envs>
-        <env name="PYTHONUNBUFFERED" value="1" />
-      </envs>
-      <option name="SDK_HOME" value="" />
-      <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
-      <option name="IS_MODULE_SDK" value="true" />
-      <option name="ADD_CONTENT_ROOTS" value="true" />
-      <option name="ADD_SOURCE_ROOTS" value="true" />
-      <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
-      <option name="SCRIPT_NAME" value="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\run_models.py" />
-      <option name="PARAMETERS" value="" />
-      <option name="SHOW_COMMAND_LINE" value="true" />
-      <option name="EMULATE_TERMINAL" value="false" />
-      <option name="MODULE_MODE" value="false" />
-      <option name="REDIRECT_INPUT" value="false" />
-      <option name="INPUT_FILE" value="" />
-      <method v="2" />
-    </configuration>
-    <configuration name="run_models" type="PythonConfigurationType" factoryName="Python" temporary="true">
-      <module name="ae_toolbox_torch" />
-      <option name="INTERPRETER_OPTIONS" value="" />
-      <option name="PARENT_ENVS" value="true" />
-      <option name="SDK_HOME" value="" />
-      <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
-      <option name="IS_MODULE_SDK" value="true" />
-      <option name="ADD_CONTENT_ROOTS" value="true" />
-      <option name="ADD_SOURCE_ROOTS" value="true" />
-      <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
-      <option name="SCRIPT_NAME" value="$PROJECT_DIR$/run_models.py" />
-      <option name="PARAMETERS" value="" />
-      <option name="SHOW_COMMAND_LINE" value="true" />
-      <option name="EMULATE_TERMINAL" value="false" />
-      <option name="MODULE_MODE" value="false" />
-      <option name="REDIRECT_INPUT" value="false" />
-      <option name="INPUT_FILE" value="" />
-      <method v="2" />
-    </configuration>
-    <configuration name="viz_latent" type="PythonConfigurationType" factoryName="Python" temporary="true">
-      <module name="ae_toolbox_torch" />
-      <option name="INTERPRETER_OPTIONS" value="" />
-      <option name="PARENT_ENVS" value="true" />
-      <option name="SDK_HOME" value="" />
-      <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/viz" />
-      <option name="IS_MODULE_SDK" value="true" />
-      <option name="ADD_CONTENT_ROOTS" value="true" />
-      <option name="ADD_SOURCE_ROOTS" value="true" />
-      <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
-      <option name="SCRIPT_NAME" value="$PROJECT_DIR$/viz/viz_latent.py" />
-      <option name="PARAMETERS" value="" />
-      <option name="SHOW_COMMAND_LINE" value="true" />
-      <option name="EMULATE_TERMINAL" value="false" />
-      <option name="MODULE_MODE" value="false" />
-      <option name="REDIRECT_INPUT" value="false" />
-      <option name="INPUT_FILE" value="" />
-      <method v="2" />
-    </configuration>
-    <list>
-      <item itemvalue="Python.run_basic_ae" />
-      <item itemvalue="Python.run_models" />
-      <item itemvalue="Python.viz_latent" />
-    </list>
-    <recent_temporary>
-      <list>
-        <item itemvalue="Python.viz_latent" />
-        <item itemvalue="Python.run_models" />
-        <item itemvalue="Python.run_basic_ae" />
-      </list>
-    </recent_temporary>
-  </component>
-  <component name="SvnConfiguration">
-    <configuration />
-  </component>
-  <component name="TaskManager">
-    <task active="true" id="Default" summary="Default task">
-      <changelist id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="" />
-      <created>1564587418949</created>
-      <option name="number" value="Default" />
-      <option name="presentableId" value="Default" />
-      <updated>1564587418949</updated>
-      <workItem from="1564587420277" duration="6891000" />
-      <workItem from="1565364574595" duration="1092000" />
-      <workItem from="1565592214301" duration="53660000" />
-      <workItem from="1565793671730" duration="53351000" />
-      <workItem from="1566372837067" duration="28318000" />
-    </task>
-    <task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
-      <created>1565793753423</created>
-      <option name="number" value="00001" />
-      <option name="presentableId" value="LOCAL-00001" />
-      <option name="project" value="LOCAL" />
-      <updated>1565793753423</updated>
-    </task>
-    <task id="LOCAL-00002" summary="Lightning integration basic ae, dataloaders and dataset">
-      <created>1565958589041</created>
-      <option name="number" value="00002" />
-      <option name="presentableId" value="LOCAL-00002" />
-      <option name="project" value="LOCAL" />
-      <updated>1565958589041</updated>
-    </task>
-    <task id="LOCAL-00003" summary="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized">
-      <created>1565987964760</created>
-      <option name="number" value="00003" />
-      <option name="presentableId" value="LOCAL-00003" />
-      <option name="project" value="LOCAL" />
-      <updated>1565987964760</updated>
-    </task>
-    <task id="LOCAL-00004" summary="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized">
-      <created>1566064016196</created>
-      <option name="number" value="00004" />
-      <option name="presentableId" value="LOCAL-00004" />
-      <option name="project" value="LOCAL" />
-      <updated>1566064016196</updated>
-    </task>
-    <task id="LOCAL-00005" summary="Done: First VIsualization&#10;ToDo: Visualization for all classes, latent space setups">
-      <created>1566366992088</created>
-      <option name="number" value="00005" />
-      <option name="presentableId" value="LOCAL-00005" />
-      <option name="project" value="LOCAL" />
-      <updated>1566366992088</updated>
-    </task>
-    <task id="LOCAL-00006" summary="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript">
-      <created>1566546840536</created>
-      <option name="number" value="00006" />
-      <option name="presentableId" value="LOCAL-00006" />
-      <option name="project" value="LOCAL" />
-      <updated>1566546840536</updated>
-    </task>
-    <option name="localTasksCounter" value="7" />
-    <servers />
-  </component>
-  <component name="TypeScriptGeneratedFilesManager">
-    <option name="version" value="1" />
-  </component>
-  <component name="Vcs.Log.Tabs.Properties">
-    <option name="TAB_STATES">
-      <map>
-        <entry key="MAIN">
-          <value>
-            <State>
-              <option name="COLUMN_ORDER" />
-            </State>
-          </value>
-        </entry>
-      </map>
-    </option>
-  </component>
-  <component name="VcsManagerConfiguration">
-    <MESSAGE value="Lightning integration basic ae, dataloaders and dataset" />
-    <MESSAGE value="Done: AE, VAE, AAE&#10;ToDo: Double AAE, Visualization&#10;All Modularized" />
-    <MESSAGE value="Done: First VIsualization&#10;ToDo: Visualization for all classes, latent space setups" />
-    <MESSAGE value="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript" />
-    <option name="LAST_COMMIT_MESSAGE" value="Done: Latent Space Viz&#10;ToDo: Visualization for variational spaces&#10;Trajectory Coloring&#10;Post Processing&#10;Metric&#10;Slurm Skript" />
-  </component>
-  <component name="XDebuggerManager">
-    <breakpoint-manager>
-      <breakpoints>
-        <line-breakpoint enabled="true" suspend="THREAD" type="python-line">
-          <url>file://$PROJECT_DIR$/networks/modules.py</url>
-          <line>206</line>
-          <option name="timeStamp" value="51" />
-        </line-breakpoint>
-        <line-breakpoint enabled="true" suspend="THREAD" type="python-line">
-          <url>file://$PROJECT_DIR$/networks/seperating_adversarial_auto_encoder.py</url>
-          <line>23</line>
-          <option name="timeStamp" value="52" />
-        </line-breakpoint>
-        <line-breakpoint enabled="true" suspend="THREAD" type="python-line">
-          <url>file://$PROJECT_DIR$/viz/viz_latent.py</url>
-          <line>67</line>
-          <option name="timeStamp" value="56" />
-        </line-breakpoint>
-      </breakpoints>
-      <default-breakpoints>
-        <breakpoint type="python-exception">
-          <properties notifyOnlyOnFirst="true" notifyOnTerminate="true" ignoreLibraries="true" exception="BaseException">
-            <option name="ignoreLibraries" value="true" />
-            <option name="notifyOnTerminate" value="true" />
-            <option name="notifyOnlyOnFirst" value="true" />
-          </properties>
-        </breakpoint>
-      </default-breakpoints>
-    </breakpoint-manager>
-  </component>
-  <component name="com.intellij.coverage.CoverageDataManagerImpl">
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$viz_latent.coverage" NAME="viz_latent Coverage Results" MODIFIED="1566541302103" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/viz" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565937164457" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1566537126647" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
-    <SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
-  </component>
-</project>
\ No newline at end of file
diff --git a/dataset.py b/dataset.py
index a5c85a1..6d160dc 100644
--- a/dataset.py
+++ b/dataset.py
@@ -167,7 +167,7 @@ class Trajectories(Dataset):
         dataDict = dict()
         for key, val in kwargs.items():
             if key in self.isovistMeasures:
-                dataDict[key] = torch.tensor(val)
+                dataDict[key] = torch.tensor(val, requires_grad=False)
         # Check if all keys are of same length
         assert len(set(x.size()[0] for x in dataDict.values() if torch.is_tensor(x))) <= 1
         data = torch.stack([dataDict[key] for key in self.isovistMeasures], dim=-1)
diff --git a/networks/adverserial_auto_encoder.py b/networks/adverserial_auto_encoder.py
index 53352fe..faaeee8 100644
--- a/networks/adverserial_auto_encoder.py
+++ b/networks/adverserial_auto_encoder.py
@@ -1,7 +1,7 @@
+from torch.optim import Adam
+
 from networks.auto_encoder import AutoEncoder
 from torch.nn.functional import mse_loss
-from torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoid
-from torch.distributions import Normal
 from networks.modules import *
 import torch
 
@@ -23,14 +23,10 @@ class AdversarialAutoEncoder(AutoEncoder):
         return z, x_hat
 
 
-class AdversarialAELightningOverrides:
-
-    @property
-    def name(self):
-        return self.__class__.__name__
-
-    def forward(self, x):
-        return self.network.forward(x)
+class AdversarialAELightningOverrides(LightningModuleOverrides):
+    
+    def __init__(self):
+        super(AdversarialAELightningOverrides, self).__init__()
 
     def training_step(self, batch, _, optimizer_i):
         if optimizer_i == 0:
@@ -67,5 +63,12 @@ class AdversarialAELightningOverrides:
             raise RuntimeError('This should not have happened, catch me if u can.')
 
 
+    # This is Fucked up, why do i need to put an additional empty list here?
+    def configure_optimizers(self):
+        return [Adam(self.network.discriminator.parameters(), lr=0.02),
+                Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
+               []
+
+
 if __name__ == '__main__':
     raise PermissionError('Get out of here - never run this module')
diff --git a/networks/auto_encoder.py b/networks/auto_encoder.py
index b72bc59..a834d1d 100644
--- a/networks/auto_encoder.py
+++ b/networks/auto_encoder.py
@@ -1,3 +1,5 @@
+from torch.optim import Adam
+
 from .modules import *
 from torch.nn.functional import mse_loss
 from torch import Tensor
@@ -26,14 +28,10 @@ class AutoEncoder(AbstractNeuralNetwork, ABC):
         return z, x_hat
 
 
-class AutoEncoderLightningOverrides:
+class AutoEncoderLightningOverrides(LightningModuleOverrides):
 
-    @property
-    def name(self):
-        return self.__class__.__name__
-
-    def forward(self, x):
-        return self.network.forward(x)
+    def __init__(self):
+        super(AutoEncoderLightningOverrides, self).__init__()
 
     def training_step(self, x, batch_nb):
         # z, x_hat
@@ -41,6 +39,9 @@ class AutoEncoderLightningOverrides:
         loss = mse_loss(x, x_hat)
         return {'loss': loss}
 
+    def configure_optimizers(self):
+        return [Adam(self.parameters(), lr=0.02)]
+
 
 if __name__ == '__main__':
     raise PermissionError('Get out of here - never run this module')
diff --git a/networks/modules.py b/networks/modules.py
index 0cc5ccf..81a02bb 100644
--- a/networks/modules.py
+++ b/networks/modules.py
@@ -1,11 +1,34 @@
+import os
+
 import torch
 import pytorch_lightning as pl
-from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU, AvgPool2d
+from pytorch_lightning import data_loader
+from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
 
 from abc import ABC, abstractmethod
 
 #######################
-# Abstract NN Class
+# Abstract NN Class & Lightning Module
+from torch.utils.data import DataLoader
+
+from dataset import DataContainer
+
+
+class LightningModuleOverrides:
+
+    @property
+    def name(self):
+        return self.__class__.__name__
+
+    def forward(self, x):
+        return self.network.forward(x)
+
+    @data_loader
+    def tng_dataloader(self):
+        num_workers = os.cpu_count() // 2
+        return DataLoader(DataContainer('data', self.size, self.step),
+                          shuffle=True, batch_size=100, num_workers=num_workers)
+
 
 class AbstractNeuralNetwork(Module):
 
diff --git a/networks/seperating_adversarial_auto_encoder.py b/networks/seperating_adversarial_auto_encoder.py
index 5bf5fc5..b0872f4 100644
--- a/networks/seperating_adversarial_auto_encoder.py
+++ b/networks/seperating_adversarial_auto_encoder.py
@@ -1,3 +1,5 @@
+from torch.optim import Adam
+
 from networks.auto_encoder import AutoEncoder
 from torch.nn.functional import mse_loss
 from networks.modules import *
@@ -7,16 +9,15 @@ import torch
 class SeperatingAdversarialAutoEncoder(Module):
 
     def __init__(self, latent_dim, features, **kwargs):
-        assert latent_dim % 2 == 0, f'Your latent space needs to be even, not odd, but was: "{latent_dim}"'
         super(SeperatingAdversarialAutoEncoder, self).__init__()
 
         self.latent_dim = latent_dim
         self.features = features
-        self.spatial_encoder = PoolingEncoder(self.latent_dim // 2)
-        self.temporal_encoder = Encoder(self.latent_dim // 2)
+        self.spatial_encoder = PoolingEncoder(self.latent_dim)
+        self.temporal_encoder = Encoder(self.latent_dim)
         self.decoder = Decoder(self.latent_dim, self.features)
-        self.spatial_discriminator = Discriminator(self.latent_dim // 2, self.features)
-        self.temporal_discriminator = Discriminator(self.latent_dim // 2, self.features)
+        self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
+        self.temporal_discriminator = Discriminator(self.latent_dim, self.features)
 
     def forward(self, batch):
         # Encoder
@@ -30,14 +31,10 @@ class SeperatingAdversarialAutoEncoder(Module):
         return z_spatial, z_temporal, x_hat
 
 
-class SeparatingAdversarialAELightningOverrides:
+class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
 
-    @property
-    def name(self):
-        return self.__class__.__name__
-
-    def forward(self, x):
-        return self.network.forward(x)
+    def __init__(self):
+        super(SeparatingAdversarialAELightningOverrides, self).__init__()
 
     def training_step(self, batch, _, optimizer_i):
         spatial_latent_fake, temporal_latent_fake, batch_hat = self.network.forward(batch)
@@ -91,6 +88,17 @@ class SeparatingAdversarialAELightningOverrides:
         else:
             raise RuntimeError('This should not have happened, catch me if u can.')
 
+    # This is Fucked up, why do i need to put an additional empty list here?
+    def configure_optimizers(self):
+        return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
+                     , lr=0.02),
+                Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
+                     , lr=0.02),
+                Adam([*self.network.temporal_encoder.parameters(),
+                      *self.network.spatial_encoder.parameters(),
+                      *self.network.decoder.parameters()]
+                     , lr=0.02)], []
+
 
 if __name__ == '__main__':
     raise PermissionError('Get out of here - never run this module')
diff --git a/networks/variational_auto_encoder.py b/networks/variational_auto_encoder.py
index 64cb7a9..aad4a54 100644
--- a/networks/variational_auto_encoder.py
+++ b/networks/variational_auto_encoder.py
@@ -1,3 +1,5 @@
+from torch.optim import Adam
+
 from .modules import *
 from torch.nn.functional import mse_loss
 
@@ -33,14 +35,10 @@ class VariationalAutoEncoder(AbstractNeuralNetwork, ABC):
         return x_hat, mu, logvar
 
 
-class VariationalAutoEncoderLightningOverrides:
+class VariationalAutoEncoderLightningOverrides(LightningModuleOverrides):
 
-    @property
-    def name(self):
-        return self.network.name
-
-    def forward(self, x):
-        return self.network.forward(x)
+    def __init__(self):
+        super(VariationalAutoEncoderLightningOverrides, self).__init__()
 
     def training_step(self, x, _):
         x_hat, logvar, mu = self.forward(x)
@@ -53,6 +51,9 @@ class VariationalAutoEncoderLightningOverrides:
         KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
         return {'loss': BCE + KLD}
 
+    def configure_optimizers(self):
+        return [Adam(self.parameters(), lr=0.02)]
+
 
 if __name__ == '__main__':
     raise PermissionError('Get out of here - never run this module')
diff --git a/run_models.py b/run_models.py
index 6362036..228430d 100644
--- a/run_models.py
+++ b/run_models.py
@@ -1,3 +1,5 @@
+from torch.distributions import Normal
+
 from networks.auto_encoder import *
 import os
 import time
@@ -18,90 +20,54 @@ from argparse import Namespace
 from argparse import ArgumentParser
 
 args = ArgumentParser()
-args.add_argument('step')
-args.add_argument('features')
-args.add_argument('size')
-args.add_argument('latent_dim')
+args.add_argument('--step', default=0)
+args.add_argument('--features', default=0)
+args.add_argument('--size', default=0)
+args.add_argument('--latent_dim', default=0)
+args.add_argument('--model', default='Model')
 
 
 # ToDo: How to implement this better?
 # other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
 class Model(AutoEncoderLightningOverrides, LightningModule):
 
-    def __init__(self, latent_dim=0, size=0, step=0, features=0, **kwargs):
-        assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
-        self.size = args.size
-        self.latent_dim = args.latent_dim
-        self.features = args.features
-        self.step = args.step
+    def __init__(self, parameters, **kwargs):
+        assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
+        self.size = parameters.size
+        self.latent_dim = parameters.latent_dim
+        self.features = parameters.features
+        self.step = parameters.step
         super(Model, self).__init__()
         self.network = AutoEncoder(self.latent_dim, self.features)
 
-    def configure_optimizers(self):
-        return [Adam(self.parameters(), lr=0.02)]
-
-    @data_loader
-    def tng_dataloader(self):
-        return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
-
 
 class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
 
-    @property
-    def name(self):
-        return self.network.name
-
-    def __init__(self, args: Namespace, **kwargs):
-        assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
-        self.size = args.size
-        self.latent_dim = args.latent_dim
-        self.features = args.features
-        self.step = args.step
+    def __init__(self, parameters: Namespace, **kwargs):
+        assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
+        self.size = parameters.size
+        self.latent_dim = parameters.latent_dim
+        self.features = parameters.features
+        self.step = parameters.step
         super(AdversarialModel, self).__init__()
         self.normal = Normal(0, 1)
         self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
         pass
 
-    # This is Fucked up, why do i need to put an additional empty list here?
-    def configure_optimizers(self):
-        return [Adam(self.network.discriminator.parameters(), lr=0.02),
-                Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
-               []
-
-    @data_loader
-    def tng_dataloader(self):
-        return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
-
 
 class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
 
-    def __init__(self, args: Namespace, **kwargs):
-        assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
-        self.size = args.size
-        self.latent_dim = args.latent_dim
-        self.features = args.features
-        self.step = args.step
+    def __init__(self, parameters: Namespace, **kwargs):
+        assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
+        self.size = parameters.size
+        self.latent_dim = parameters.latent_dim
+        self.features = parameters.features
+        self.step = parameters.step
         super(SeparatingAdversarialModel, self).__init__()
         self.normal = Normal(0, 1)
         self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
         pass
 
-    # This is Fucked up, why do i need to put an additional empty list here?
-    def configure_optimizers(self):
-        return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
-                     , lr=0.02),
-                Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
-                     , lr=0.02),
-                Adam([*self.network.temporal_encoder.parameters(),
-                      *self.network.spatial_encoder.parameters(),
-                      *self.network.decoder.parameters()]
-                     , lr=0.02)], []
-
-    @data_loader
-    def tng_dataloader(self):
-        num_workers = os.cpu_count() // 2
-        return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100, num_workers=num_workers)
-
 
 if __name__ == '__main__':
     features = 6
@@ -110,7 +76,7 @@ if __name__ == '__main__':
     arguments = args.parse_args()
     arguments.__dict__.update(tag_dict)
 
-    model = SeparatingAdversarialModel(arguments)
+    model = globals()[arguments.model](arguments)
 
     # PyTorch summarywriter with a few bells and whistles
     outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
@@ -124,7 +90,7 @@ if __name__ == '__main__':
         filepath=os.path.join(outpath, 'weights.ckpt'),
         save_best_only=True,
         verbose=True,
-        monitor='tng_loss',  # val_loss
+        monitor='val_loss',  # val_loss
         mode='min',
     )
 
diff --git a/viz/viz_latent.py b/viz/viz_latent.py
index 140304c..15e61f0 100644
--- a/viz/viz_latent.py
+++ b/viz/viz_latent.py
@@ -1,21 +1,17 @@
-# TODO: THIS
-import seaborn as sb
-import torch
-from torch.utils.data import DataLoader
-from pytorch_lightning import data_loader
-from dataset import DataContainer
 from collections import defaultdict
 from tqdm import tqdm
-import os
 
 from sklearn.manifold import TSNE
 from sklearn.decomposition import PCA
 
-import seaborn as sns; sns.set()
+import seaborn as sns
 import matplotlib.pyplot as plt
 
 from run_models import *
 
+sns.set()
+
+
 def search_for_weights(folder):
     while not os.path.exists(folder):
         if len(os.path.split(folder)) >= 50:
@@ -32,6 +28,8 @@ def search_for_weights(folder):
 
 
 def load_and_predict(path_like_element):
+    if any([x.name.endswith('.png') for x in os.scandir(os.path.dirname(path_like_element))]):
+        return
 
     # Define Loop to search for models and folder with visualizations
     model = globals()[path_like_element.path.split(os.sep)[-3]]
@@ -46,36 +44,50 @@ def load_and_predict(path_like_element):
     pretrained_model.eval()
     pretrained_model.freeze()
 
-    # Load the data for prediction
-    dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
+    with torch.no_grad():
 
-    # Do the inference
-    prediction_dict = defaultdict(list)
-    for i in tqdm(range(len(dataset)), total=len(dataset)):
-        p_X = pretrained_model(dataset[i].unsqueeze(0))
-        for idx in range(len(p_X) - 1):
-            prediction_dict[idx].append(p_X[idx])
+        # Load the data for prediction
+        dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
+
+        # Do the inference
+        prediction_dict = defaultdict(list)
+        for i in tqdm(range(len(dataset)), total=len(dataset)):
+            p_X = pretrained_model(dataset[i].unsqueeze(0))
+            for idx in range(len(p_X) - 1):
+                prediction_dict[idx].append(p_X[idx])
 
     predictions = [torch.cat(prediction).detach().numpy() for prediction in prediction_dict.values()]
-    for prediction in predictions:
-        viz_latent(prediction)
+    for idx, prediction in enumerate(predictions):
+        plot, _ = viz_latent(prediction)
+        plot.savefig(os.path.join(os.path.dirname(path_like_element), f'latent_space_{idx}.png'))
 
 
-def viz_latent(prediction):
+def viz_latent(prediction, title=f'Latent Space '):
     if prediction.shape[-1] <= 1:
         raise ValueError('How did this happen?')
     elif prediction.shape[-1] == 2:
         ax = sns.scatterplot(x=prediction[:, 0], y=prediction[:, 1])
-        plt.show()
-        return ax
+        try:
+            plt.show()
+        except:
+            pass
+        return ax.figure, (ax)
     else:
         fig, axs = plt.subplots(ncols=2)
-        predictions_pca = PCA(n_components=2)
-        predictions_tsne = TSNE(n_components=2)
-        pca_plot = sns.scatterplot(x=predictions_pca[:, 0], y=predictions_pca[:, 1], ax=axs[0])
-        tsne_plot = sns.scatterplot(x=predictions_tsne[:, 0], y=predictions_tsne[:, 1], ax=axs[1])
-        plt.show()
-        return fig, axs, pca_plot, tsne_plot
+        plots = []
+        for idx, dim_reducer in enumerate([PCA, TSNE]):
+            predictions_reduced = dim_reducer(n_components=2).fit_transform(prediction)
+            plot = sns.scatterplot(x=predictions_reduced[:, 0], y=predictions_reduced[:, 1],
+                                         ax=axs[idx])
+            plot.set_title(dim_reducer.__name__)
+            plots.append(plot)
+
+        try:
+            plt.show()
+        except:
+            pass
+        return fig, (*plots, )
+
 
 if __name__ == '__main__':
     path = 'output'