2019-08-23 13:10:47 +02:00

283 lines
7.5 KiB
Python

import os
import torch
import pytorch_lightning as pl
from pytorch_lightning import data_loader
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
from abc import ABC, abstractmethod
#######################
# Abstract NN Class & Lightning Module
from torch.utils.data import DataLoader
from dataset import DataContainer
class LightningModuleOverrides:
@property
def name(self):
return self.__class__.__name__
def forward(self, x):
return self.network.forward(x)
@data_loader
def tng_dataloader(self):
num_workers = os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step),
shuffle=True, batch_size=100, num_workers=num_workers)
class AbstractNeuralNetwork(Module):
@property
def name(self):
return self.__class__.__name__
def __init__(self):
super(AbstractNeuralNetwork, self).__init__()
def forward(self, batch):
pass
######################
# Abstract Network class following the Lightning Syntax
class LightningModule(pl.LightningModule, ABC):
def __init__(self):
super(LightningModule, self).__init__()
@abstractmethod
def forward(self, x):
raise NotImplementedError
@abstractmethod
def training_step(self, batch, batch_nb):
# REQUIRED
raise NotImplementedError
def validation_step(self, batch, batch_nb):
# OPTIONAL
pass
def validation_end(self, outputs):
# OPTIONAL
pass
@abstractmethod
def configure_optimizers(self):
# REQUIRED
raise NotImplementedError
@pl.data_loader
def tng_dataloader(self):
# REQUIRED
raise NotImplementedError
# return DataLoader(MNIST(os.getcwd(), train=True, download=True,
# transform=transforms.ToTensor()), batch_size=32)
@pl.data_loader
def val_dataloader(self):
# OPTIONAL
pass
@pl.data_loader
def test_dataloader(self):
# OPTIONAL
pass
#######################
# Utility Modules
class TimeDistributed(Module):
def __init__(self, module, batch_first=True):
super(TimeDistributed, self).__init__()
self.module = module
self.batch_first = batch_first
def forward(self, x):
if len(x.size()) <= 2:
return self.module(x)
# Squash samples and timesteps into a single axis
x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size)
y = self.module(x_reshape)
# We have to reshape Y
if self.batch_first:
y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size)
else:
y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size)
return y
class Repeater(Module):
def __init__(self, shape):
super(Repeater, self).__init__()
self.shape = shape
def forward(self, x: torch.Tensor):
x = x.unsqueeze(-2)
return x.expand(self.shape)
class RNNOutputFilter(Module):
def __init__(self, return_output=True, only_last=False):
super(RNNOutputFilter, self).__init__()
self.only_last = only_last
self.return_output = return_output
def forward(self, x: tuple):
outputs, hidden = x
out = outputs if self.return_output else hidden
return out if not self.only_last else out[:, -1, :]
class AvgDimPool(Module):
def __init__(self):
super(AvgDimPool, self).__init__()
def forward(self, x):
return x.mean(-2)
#######################
# Network Modules
# Generators, Decoders, Encoders, Discriminators
class Discriminator(Module):
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU):
super(Discriminator, self).__init__()
self.features = features
self.latent_dim = latent_dim
self.l1 = Linear(self.latent_dim, self.features * 10)
self.l2 = Linear(self.features * 10, self.features * 20)
self.lout = Linear(self.features * 20, 1)
self.dropout = Dropout(dropout)
self.activation = activation()
self.sigmoid = Sigmoid()
def forward(self, x, **kwargs):
tensor = self.l1(x)
tensor = self.dropout(self.activation(tensor))
tensor = self.l2(tensor)
tensor = self.dropout(self.activation(tensor))
tensor = self.lout(tensor)
tensor = self.sigmoid(tensor)
return tensor
class DecoderLinearStack(Module):
def __init__(self, out_shape):
super(DecoderLinearStack, self).__init__()
self.l1 = Linear(10, 100, bias=True)
self.l2 = Linear(100, out_shape, bias=True)
self.activation = ReLU()
self.activation_out = Tanh()
def forward(self, x):
tensor = self.l1(x)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
tensor = self.activation_out(tensor)
return tensor
class EncoderLinearStack(Module):
def __init__(self):
super(EncoderLinearStack, self).__init__()
# FixMe: Get Hardcoded shit out of here
self.l1 = Linear(6, 100, bias=True)
self.l2 = Linear(100, 10, bias=True)
self.activation = ReLU()
def forward(self, x):
tensor = self.l1(x)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
tensor = self.activation(tensor)
return tensor
class Encoder(Module):
def __init__(self, lat_dim, variational=False):
self.lat_dim = lat_dim
self.variational = variational
super(Encoder, self).__init__()
self.l_stack = TimeDistributed(EncoderLinearStack())
self.gru = GRU(10, 10, batch_first=True)
self.filter = RNNOutputFilter(only_last=True)
if variational:
self.mu = Linear(10, self.lat_dim)
self.logvar = Linear(10, self.lat_dim)
else:
self.lat_dim_layer = Linear(10, self.lat_dim)
def forward(self, x):
tensor = self.l_stack(x)
tensor = self.gru(tensor)
tensor = self.filter(tensor)
if self.variational:
tensor = self.mu(tensor), self.logvar(tensor)
else:
tensor = self.lat_dim_layer(tensor)
return tensor
class PoolingEncoder(Module):
def __init__(self, lat_dim, variational=False):
self.lat_dim = lat_dim
self.variational = variational
super(PoolingEncoder, self).__init__()
self.p = AvgDimPool()
self.l = EncoderLinearStack()
if variational:
self.mu = Linear(10, self.lat_dim)
self.logvar = Linear(10, self.lat_dim)
else:
self.lat_dim_layer = Linear(10, self.lat_dim)
def forward(self, x):
tensor = self.p(x)
tensor = self.l(tensor)
if self.variational:
tensor = self.mu(tensor), self.logvar(tensor)
else:
tensor = self.lat_dim_layer(tensor)
return tensor
class Decoder(Module):
def __init__(self, latent_dim, *args, variational=False):
self.variational = variational
super(Decoder, self).__init__()
self.g = GRU(latent_dim, 10, batch_first=True)
self.filter = RNNOutputFilter()
self.l_stack = TimeDistributed(DecoderLinearStack(*args))
pass
def forward(self, x):
tensor = self.g(x)
tensor = self.filter(tensor)
tensor = self.l_stack(tensor)
return tensor
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')