ae_toolbox_torch/viz/viz_latent.py
2019-08-23 13:10:47 +02:00

94 lines
3.1 KiB
Python

from collections import defaultdict
from tqdm import tqdm
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import seaborn as sns
import matplotlib.pyplot as plt
from run_models import *
sns.set()
def search_for_weights(folder):
while not os.path.exists(folder):
if len(os.path.split(folder)) >= 50:
raise FileNotFoundError(f'The folder "{folder}" could not be found')
folder = os.path.join(os.pardir, folder)
for element in os.scandir(folder):
if os.path.exists(element):
if element.is_dir():
search_for_weights(element.path)
elif element.is_file() and element.name.endswith('.ckpt'):
load_and_predict(element)
else:
continue
def load_and_predict(path_like_element):
if any([x.name.endswith('.png') for x in os.scandir(os.path.dirname(path_like_element))]):
return
# Define Loop to search for models and folder with visualizations
model = globals()[path_like_element.path.split(os.sep)[-3]]
pretrained_model = model.load_from_metrics(
weights_path=path_like_element.path,
tags_csv=os.path.join(os.path.dirname(path_like_element), 'default', 'version_0', 'meta_tags.csv'),
on_gpu=True if torch.cuda.is_available() else False,
map_location=None
)
# Init model and freeze its weights ( for faster inference)
pretrained_model.eval()
pretrained_model.freeze()
with torch.no_grad():
# Load the data for prediction
dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
# Do the inference
prediction_dict = defaultdict(list)
for i in tqdm(range(len(dataset)), total=len(dataset)):
p_X = pretrained_model(dataset[i].unsqueeze(0))
for idx in range(len(p_X) - 1):
prediction_dict[idx].append(p_X[idx])
predictions = [torch.cat(prediction).detach().numpy() for prediction in prediction_dict.values()]
for idx, prediction in enumerate(predictions):
plot, _ = viz_latent(prediction)
plot.savefig(os.path.join(os.path.dirname(path_like_element), f'latent_space_{idx}.png'))
def viz_latent(prediction, title=f'Latent Space '):
if prediction.shape[-1] <= 1:
raise ValueError('How did this happen?')
elif prediction.shape[-1] == 2:
ax = sns.scatterplot(x=prediction[:, 0], y=prediction[:, 1])
try:
plt.show()
except:
pass
return ax.figure, (ax)
else:
fig, axs = plt.subplots(ncols=2)
plots = []
for idx, dim_reducer in enumerate([PCA, TSNE]):
predictions_reduced = dim_reducer(n_components=2).fit_transform(prediction)
plot = sns.scatterplot(x=predictions_reduced[:, 0], y=predictions_reduced[:, 1],
ax=axs[idx])
plot.set_title(dim_reducer.__name__)
plots.append(plot)
try:
plt.show()
except:
pass
return fig, (*plots, )
if __name__ == '__main__':
path = 'output'
search_for_weights(path)