104 lines
3.8 KiB
Python
104 lines
3.8 KiB
Python
from torch.distributions import Normal
|
|
|
|
from networks.auto_encoder import *
|
|
import os
|
|
import time
|
|
from networks.variational_auto_encoder import *
|
|
from networks.adverserial_auto_encoder import *
|
|
from networks.seperating_adversarial_auto_encoder import *
|
|
from networks.modules import LightningModule
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from pytorch_lightning import data_loader
|
|
from dataset import DataContainer
|
|
|
|
from torch.nn import BatchNorm1d
|
|
from pytorch_lightning import Trainer
|
|
from test_tube import Experiment
|
|
|
|
from argparse import Namespace
|
|
from argparse import ArgumentParser
|
|
|
|
args = ArgumentParser()
|
|
args.add_argument('--step', default=0)
|
|
args.add_argument('--features', default=0)
|
|
args.add_argument('--size', default=0)
|
|
args.add_argument('--latent_dim', default=0)
|
|
args.add_argument('--model', default='Model')
|
|
|
|
|
|
# ToDo: How to implement this better?
|
|
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
|
class Model(AutoEncoderLightningOverrides, LightningModule):
|
|
|
|
def __init__(self, parameters, **kwargs):
|
|
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = parameters.size
|
|
self.latent_dim = parameters.latent_dim
|
|
self.features = parameters.features
|
|
self.step = parameters.step
|
|
super(Model, self).__init__()
|
|
self.network = AutoEncoder(self.latent_dim, self.features)
|
|
|
|
|
|
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
|
|
|
def __init__(self, parameters: Namespace, **kwargs):
|
|
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = parameters.size
|
|
self.latent_dim = parameters.latent_dim
|
|
self.features = parameters.features
|
|
self.step = parameters.step
|
|
super(AdversarialModel, self).__init__()
|
|
self.normal = Normal(0, 1)
|
|
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
|
|
pass
|
|
|
|
|
|
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
|
|
|
def __init__(self, parameters: Namespace, **kwargs):
|
|
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = parameters.size
|
|
self.latent_dim = parameters.latent_dim
|
|
self.features = parameters.features
|
|
self.step = parameters.step
|
|
super(SeparatingAdversarialModel, self).__init__()
|
|
self.normal = Normal(0, 1)
|
|
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
features = 6
|
|
tag_dict = dict(features=features, latent_dim=4, size=5, step=6, refresh=False,
|
|
transforms=[BatchNorm1d(features)])
|
|
arguments = args.parse_args()
|
|
arguments.__dict__.update(tag_dict)
|
|
|
|
model = globals()[arguments.model](arguments)
|
|
|
|
# PyTorch summarywriter with a few bells and whistles
|
|
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
|
os.makedirs(outpath, exist_ok=True)
|
|
exp = Experiment(save_dir=outpath)
|
|
exp.tag(tag_dict=tag_dict)
|
|
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
checkpoint_callback = ModelCheckpoint(
|
|
filepath=os.path.join(outpath, 'weights.ckpt'),
|
|
save_best_only=True,
|
|
verbose=True,
|
|
monitor='val_loss', # val_loss
|
|
mode='min',
|
|
)
|
|
|
|
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
|
|
trainer.fit(model)
|
|
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
|
|
|
# view tensorflow logs
|
|
print(f'View tensorboard logs by running\ntensorboard --logdir {outpath}')
|
|
print('and going to http://localhost:6006 on your browser')
|