smaller task train
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
import pickle
|
||||
import re
|
||||
import shutil
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import sys
|
||||
@ -45,11 +46,14 @@ from functionalities_test import test_for_fixpoints
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
BATCHSIZE = 500 if not debug else 50
|
||||
EPOCH = 100
|
||||
EPOCH = 50
|
||||
VALIDATION_FRQ = 3 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
DATA_PATH = Path('data')
|
||||
DATA_PATH.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
if debug:
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
|
||||
@ -86,6 +90,9 @@ def set_checkpoint(model, out_path, epoch_n, final_model=False):
|
||||
ckpt_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
torch.save(model, ckpt_path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
|
||||
py_store_path = Path(out_path) / 'exp_py.txt'
|
||||
if not py_store_path.exists():
|
||||
shutil.copy(__file__, py_store_path)
|
||||
return ckpt_path
|
||||
|
||||
|
||||
@ -98,9 +105,9 @@ def validate(checkpoint_path, ratio=0.1):
|
||||
ut = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
|
||||
try:
|
||||
datas = MNIST(str(data_path), transform=ut, train=False)
|
||||
datas = MNIST(str(DATA_PATH), transform=ut, train=False)
|
||||
except RuntimeError:
|
||||
datas = MNIST(str(data_path), transform=ut, train=False, download=True)
|
||||
datas = MNIST(str(DATA_PATH), transform=ut, train=False, download=True)
|
||||
valid_d = DataLoader(datas, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
|
||||
@ -171,13 +178,13 @@ def plot_training_result(path_to_dataframe):
|
||||
|
||||
# plots the first set of data
|
||||
data = df[(df['Metric'] == 'Task Loss') | (df['Metric'] == 'Self Train Loss')].groupby(['Epoch', 'Metric']).mean()
|
||||
palette = sns.color_palette()[0:data.reset_index()['Metric'].unique().shape[0]]
|
||||
palette = sns.color_palette()[1:data.reset_index()['Metric'].unique().shape[0]+1]
|
||||
sns.lineplot(data=data.groupby(['Epoch', 'Metric']).mean(), x='Epoch', y='Score', hue='Metric',
|
||||
palette=palette, ax=ax1)
|
||||
|
||||
# plots the second set of data
|
||||
data = df[(df['Metric'] == 'Test Accuracy') | (df['Metric'] == 'Train Accuracy')]
|
||||
palette = sns.color_palette()[len(palette):data.reset_index()['Metric'].unique().shape[0] + len(palette)]
|
||||
palette = sns.color_palette()[len(palette)+1:data.reset_index()['Metric'].unique().shape[0] + len(palette)+1]
|
||||
sns.lineplot(data=data, x='Epoch', y='Score', marker='o', hue='Metric', palette=palette)
|
||||
|
||||
ax1.set(yscale='log', ylabel='Losses')
|
||||
@ -195,7 +202,7 @@ def plot_training_result(path_to_dataframe):
|
||||
|
||||
|
||||
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
||||
m = torch.load(path_to_trained_model, map_location=torch.device('cpu')).eval()
|
||||
# noinspection PyProtectedMember
|
||||
particles = list(m.particles)
|
||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
||||
@ -209,31 +216,37 @@ def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
||||
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
||||
|
||||
print('gathered')
|
||||
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None, lw=1)
|
||||
_ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0)
|
||||
ax.set_title(fixtype)
|
||||
lines = ax.get_lines()
|
||||
for line in lines:
|
||||
line.set_color(sns.color_palette()[n])
|
||||
if debug:
|
||||
plt.show()
|
||||
tqdm.write(f'Connectivity Data gathered')
|
||||
for n, fixtype in enumerate(ft.all_types()):
|
||||
if df[df['type'] == fixtype].shape[0] > 0:
|
||||
plt.clf()
|
||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||
legend=False, estimator=None, lw=1)
|
||||
_ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0)
|
||||
ax.set_title(fixtype)
|
||||
lines = ax.get_lines()
|
||||
for line in lines:
|
||||
line.set_color(sns.color_palette()[n])
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300)
|
||||
tqdm.write(f'Connectivity plottet: {fixtype} - n = {df[df["type"] == fixtype].shape[0]}')
|
||||
else:
|
||||
plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300)
|
||||
print('plottet')
|
||||
tqdm.write(f'No Connectivity {fixtype}')
|
||||
|
||||
|
||||
def run_particle_dropout_test(run_path):
|
||||
diff_store_path = run_path / 'diff_store.csv'
|
||||
def run_particle_dropout_test(model_path):
|
||||
diff_store_path = model_path.parent / 'diff_store.csv'
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
prtcl_dict = defaultdict(lambda: 0)
|
||||
_ = test_for_fixpoints(prtcl_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(prtcl_dict)))
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
|
||||
acc_pre = validate(model_path, ratio=1).item()
|
||||
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
||||
diff_df.loc[diff_df.shape[0]] = ('All Organism', acc_pre, 0)
|
||||
|
||||
for fixpoint_type in ft.all_types():
|
||||
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
||||
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
||||
@ -247,14 +260,16 @@ def run_particle_dropout_test(run_path):
|
||||
return diff_store_path
|
||||
|
||||
|
||||
def plot_dropout_stacked_barplot(path_to_diff_df):
|
||||
diff_df = pd.read_csv(path_to_diff_df)
|
||||
def plot_dropout_stacked_barplot(model_path):
|
||||
diff_store_path = model_path.parent / 'diff_store.csv'
|
||||
diff_df = pd.read_csv(diff_store_path)
|
||||
particle_dict = defaultdict(lambda: 0)
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
_ = test_for_fixpoints(particle_dict, list(latest_model.particles))
|
||||
tqdm.write(str(dict(particle_dict)))
|
||||
plt.clf()
|
||||
fig, ax = plt.subplots(ncols=2)
|
||||
colors = sns.color_palette()[:diff_df.shape[0]]
|
||||
colors = sns.color_palette()[1:diff_df.shape[0]+1]
|
||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', ax=ax[0], palette=colors)
|
||||
# noinspection PyUnboundLocalVariable
|
||||
#for idx, patch in enumerate(barplot.patches):
|
||||
@ -265,18 +280,18 @@ def plot_dropout_stacked_barplot(path_to_diff_df):
|
||||
ax[0].set_title('Accuracy after particle dropout')
|
||||
ax[0].set_xlabel('Particle Type')
|
||||
|
||||
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
||||
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=list(reversed(colors)), )
|
||||
ax[1].set_title('Particle Count')
|
||||
|
||||
plt.tight_layout()
|
||||
if debug:
|
||||
plt.show()
|
||||
else:
|
||||
plt.savefig(Path(path_to_diff_df.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
plt.savefig(Path(diff_store_path.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
||||
|
||||
|
||||
def run_particle_dropout_and_plot(run_path):
|
||||
diff_store_path = run_particle_dropout_test(run_path)
|
||||
def run_particle_dropout_and_plot(model_path):
|
||||
diff_store_path = run_particle_dropout_test(model_path)
|
||||
plot_dropout_stacked_barplot(diff_store_path)
|
||||
|
||||
|
||||
@ -284,40 +299,63 @@ def flat_for_store(parameters):
|
||||
return (x.item() for y in parameters for x in y.detach().flatten())
|
||||
|
||||
|
||||
def train_self_replication(model, optimizer, st_steps) -> dict:
|
||||
for _ in range(st_steps):
|
||||
self_train_loss = model.combined_self_train(optimizer)
|
||||
# noinspection PyUnboundLocalVariable
|
||||
step_log = dict(Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
return step_log
|
||||
|
||||
|
||||
def train_task(model, optimizer, loss_func, btch_x, btch_y) -> (dict, torch.Tensor):
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
btch_x, btch_y = btch_x.to(DEVICE), btch_y.to(DEVICE)
|
||||
y_prd = model(btch_x)
|
||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||
loss = loss_func(y_prd, btch_y.to(torch.float))
|
||||
loss.backward()
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
stp_log = dict(Metric='Task Loss', Score=loss.item())
|
||||
|
||||
return stp_log, y_prd
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
self_train = True
|
||||
training = True
|
||||
train_to_id_first = False
|
||||
train_to_id_first = True
|
||||
train_to_task_first = False
|
||||
sequential_task_train = True
|
||||
force_st_for_n_from_last_epochs = 5
|
||||
n_st_per_batch = 10
|
||||
# activation = None # nn.ReLU()
|
||||
seq_task_train = True
|
||||
force_st_for_epochs_n = 5
|
||||
n_st_per_batch = 2
|
||||
activation = None # nn.ReLU()
|
||||
|
||||
use_sparse_network = True
|
||||
use_sparse_network = False
|
||||
|
||||
for weight_hidden_size in [4, 5, 6]:
|
||||
|
||||
tsk_threshold = 0.85
|
||||
weight_hidden_size = weight_hidden_size
|
||||
residual_skip = True
|
||||
n_seeds = 1
|
||||
residual_skip = False
|
||||
n_seeds = 3
|
||||
depth = 3
|
||||
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
assert not (train_to_task_first and train_to_id_first)
|
||||
|
||||
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
|
||||
# ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
||||
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
||||
sprs_str = '_sprs' if use_sparse_network else ''
|
||||
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
||||
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
|
||||
f_str = f'_f_{force_st_for_epochs_n}' if \
|
||||
force_st_for_epochs_n and seq_task_train and train_to_task_first else ""
|
||||
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
|
||||
exp_path = Path('output') / f'mn_st_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
|
||||
|
||||
if not training:
|
||||
# noinspection PyRedeclaration
|
||||
@ -325,12 +363,10 @@ if __name__ == '__main__':
|
||||
|
||||
for seed in range(n_seeds):
|
||||
seed_path = exp_path / str(seed)
|
||||
seed_path.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
model_path = seed_path / '0000_trained_model.zip'
|
||||
df_store_path = seed_path / 'train_store.csv'
|
||||
weight_store_path = seed_path / 'weight_store.csv'
|
||||
init_st_store_path = seed_path / 'init_st_counter.csv'
|
||||
srnn_parameters = dict()
|
||||
|
||||
if training:
|
||||
@ -340,145 +376,98 @@ if __name__ == '__main__':
|
||||
|
||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||
try:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||
dataset = MNIST(str(DATA_PATH), transform=utility_transforms)
|
||||
except RuntimeError:
|
||||
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
||||
dataset = MNIST(str(DATA_PATH), transform=utility_transforms, download=True)
|
||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||
|
||||
interface = np.prod(dataset[0][0].shape)
|
||||
dense_metanet = MetaNet(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size
|
||||
).to(DEVICE)
|
||||
sparse_metanet = SparseNetwork(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size
|
||||
dense_metanet = MetaNet(interface, depth=depth, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
|
||||
sparse_metanet = SparseNetwork(interface, depth=depth, width=6, out=10, residual_skip=residual_skip,
|
||||
weight_hidden_size=weight_hidden_size, activation=activation
|
||||
).to(DEVICE) if use_sparse_network else dense_metanet
|
||||
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
|
||||
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(sparse_metanet.parameters(), lr=0.004, momentum=0.9)
|
||||
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
|
||||
if train_to_task_first:
|
||||
dense_metanet = dense_metanet.train()
|
||||
for epoch in trange(10):
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
|
||||
# Task Train
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y_pred = dense_metanet(batch_x)
|
||||
|
||||
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
||||
loss.backward()
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
# Transfer weights
|
||||
if use_sparse_network:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
|
||||
if train_to_id_first:
|
||||
sparse_metanet = sparse_metanet.train()
|
||||
init_st_epochs = 1500
|
||||
init_st_df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
|
||||
sparse_optimizer = torch.optim.SGD(
|
||||
sparse_metanet.parameters(), lr=0.001, momentum=0.9
|
||||
) if use_sparse_network else dense_optimizer
|
||||
|
||||
for st_epoch in trange(init_st_epochs):
|
||||
_ = sparse_metanet.combined_self_train(optimizer)
|
||||
dense_weights_updated = False
|
||||
sparse_weights_updated = False
|
||||
|
||||
if st_epoch % 500 == 0:
|
||||
counter = defaultdict(lambda: 0)
|
||||
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||
counter = dict(counter)
|
||||
tqdm.write(f"identity_fn after {st_epoch} self-train epochs: {counter}")
|
||||
for key, value in counter.items():
|
||||
init_st_df.loc[init_st_df.shape[0]] = (st_epoch, key, value)
|
||||
sparse_metanet.reset_diverged_particles()
|
||||
counter = defaultdict(lambda: 0)
|
||||
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
|
||||
counter = dict(counter)
|
||||
tqdm.write(f"identity_fn after {init_st_epochs} self-train epochs: {counter}")
|
||||
for key, value in counter.items():
|
||||
init_st_df.loc[init_st_df.shape[0]] = (init_st_epochs, key, value)
|
||||
init_st_df.to_csv(init_st_store_path, mode='w', index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
||||
|
||||
c = pd.read_csv(init_st_store_path)
|
||||
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
|
||||
plt.savefig(init_st_store_path.parent / f'{init_st_store_path.stem}.png', dpi=300)
|
||||
|
||||
# Transfer weights
|
||||
if use_sparse_network:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
|
||||
for epoch in trange(EPOCH, desc=f'Train - Epochs'):
|
||||
tqdm.write(f'{seed}: {exp_path}')
|
||||
is_validation_epoch = (epoch % VALIDATION_FRQ == 0) if not debug else True
|
||||
is_self_train_epoch = (epoch % SELF_TRAIN_FRQ == 0) if not debug else True
|
||||
init_tsk = train_to_task_first
|
||||
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
sparse_metanet = sparse_metanet.train()
|
||||
dense_metanet = dense_metanet.train()
|
||||
if is_validation_epoch:
|
||||
metric = torchmetrics.Accuracy()
|
||||
else:
|
||||
metric = None
|
||||
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
|
||||
# Init metrics, even we do not need:
|
||||
metric = torchmetrics.Accuracy()
|
||||
|
||||
# Define what to train in this epoch:
|
||||
do_tsk_train = train_to_task_first
|
||||
force_st = (force_st_for_epochs_n >= (EPOCH - epoch)) and force_st_for_epochs_n
|
||||
init_st = (train_to_id_first and not dense_metanet.count_fixpoints() > 200)
|
||||
do_st_train = init_st or is_self_train_epoch or force_st
|
||||
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||
|
||||
# Self Train
|
||||
if is_self_train_epoch:
|
||||
for _ in range(n_st_per_batch):
|
||||
self_train_loss = sparse_metanet.combined_self_train(optimizer)
|
||||
# noinspection PyUnboundLocalVariable
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
# Clean Divergent
|
||||
sparse_metanet.reset_diverged_particles()
|
||||
if do_st_train:
|
||||
# Transfer weights
|
||||
if dense_weights_updated:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
dense_weights_updated = False
|
||||
st_steps = n_st_per_batch if not init_st else n_st_per_batch * 10
|
||||
step_log = train_self_replication(sparse_metanet, sparse_optimizer, st_steps)
|
||||
step_log.update(dict(Epoch=epoch, Batch=batch))
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if use_sparse_network:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
sparse_weights_updated = True
|
||||
|
||||
# Task Train
|
||||
# Zero your gradients for every batch!
|
||||
optimizer.zero_grad()
|
||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||
y_pred = dense_metanet(batch_x)
|
||||
if not init_st:
|
||||
# Transfer weights
|
||||
if sparse_weights_updated:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
sparse_weights_updated = False
|
||||
step_log, y_pred = train_task(dense_metanet, dense_optimizer, loss_fn, batch_x, batch_y)
|
||||
|
||||
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
||||
loss.backward()
|
||||
|
||||
# Adjust learning weights
|
||||
optimizer.step()
|
||||
|
||||
# Transfer weights
|
||||
if use_sparse_network:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
|
||||
step_log = dict(Epoch=epoch, Batch=batch,
|
||||
Metric='Task Loss', Score=loss.item())
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if is_validation_epoch:
|
||||
step_log.update(dict(Epoch=epoch, Batch=batch))
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if use_sparse_network:
|
||||
dense_weights_updated = True
|
||||
metric(y_pred.cpu(), batch_y.cpu())
|
||||
|
||||
if batch >= 3 and debug:
|
||||
break
|
||||
|
||||
if is_validation_epoch:
|
||||
dense_metanet = dense_metanet.eval()
|
||||
if sparse_weights_updated:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
sparse_weights_updated = False
|
||||
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
dense_metanet = dense_metanet.eval()
|
||||
if do_tsk_train:
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy)
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
if is_validation_epoch:
|
||||
if init_tsk or (train_to_task_first and seq_task_train):
|
||||
init_tsk = accuracy <= tsk_threshold
|
||||
if init_st or is_validation_epoch:
|
||||
if dense_weights_updated:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
dense_weights_updated = False
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||
@ -487,18 +476,26 @@ if __name__ == '__main__':
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
||||
if sum(x.is_fixpoint == ft.identity_func for x in dense_metanet.particles) > 200:
|
||||
train_to_id_first = False
|
||||
# Reset Diverged particles
|
||||
sparse_metanet.reset_diverged_particles()
|
||||
if use_sparse_network:
|
||||
sparse_weights_updated = True
|
||||
|
||||
for particle in dense_metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(),
|
||||
index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(),
|
||||
index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', meta_weight_count)
|
||||
# FLUSH to disk
|
||||
if is_validation_epoch:
|
||||
for particle in dense_metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
||||
|
||||
dense_metanet.eval()
|
||||
###########################################################
|
||||
# EPOCHS endet
|
||||
dense_metanet = dense_metanet.eval()
|
||||
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
@ -527,7 +524,7 @@ if __name__ == '__main__':
|
||||
print(f'Search path was: {seed_path}:')
|
||||
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||
exit(1)
|
||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||
|
||||
try:
|
||||
run_particle_dropout_and_plot(seed_path)
|
||||
except ValueError as e:
|
||||
|
316
experiments/meta_task_exp_small.py
Normal file
316
experiments/meta_task_exp_small.py
Normal file
@ -0,0 +1,316 @@
|
||||
import platform
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchmetrics
|
||||
from torch import nn
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
# noinspection DuplicatedCode
|
||||
if platform.node() == 'CarbonX':
|
||||
debug = True
|
||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||
print("@ Warning, Debugging Config@!!!!!! @")
|
||||
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
||||
else:
|
||||
debug = False
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
if __package__ is None:
|
||||
DIR = Path(__file__).resolve().parent
|
||||
sys.path.insert(0, str(DIR.parent))
|
||||
__package__ = DIR.name
|
||||
else:
|
||||
DIR = None
|
||||
except NameError:
|
||||
DIR = None
|
||||
pass
|
||||
|
||||
from network import MetaNet, FixTypes as ft
|
||||
from sparse_net import SparseNetwork
|
||||
from functionalities_test import test_for_fixpoints
|
||||
from experiments.meta_task_exp import new_storage_df, train_self_replication, train_task, set_checkpoint, \
|
||||
flat_for_store, plot_training_result, plot_training_particle_types, run_particle_dropout_and_plot, \
|
||||
plot_network_connectivity_by_fixtype
|
||||
|
||||
WORKER = 10 if not debug else 2
|
||||
debug = False
|
||||
BATCHSIZE = 50 if not debug else 50
|
||||
EPOCH = 10
|
||||
VALIDATION_FRQ = 1 if not debug else 1
|
||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
class AddTaskDataset(Dataset):
|
||||
def __init__(self, length=int(1e5)):
|
||||
super().__init__()
|
||||
self.length = length
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __getitem__(self, _):
|
||||
ab = torch.randn(size=(2,)).to(torch.float32)
|
||||
return ab, ab.sum(axis=-1, keepdims=True)
|
||||
|
||||
|
||||
def validate(checkpoint_path, valid_d, ratio=1, validmetric=torchmetrics.MeanAbsoluteError()):
|
||||
checkpoint_path = Path(checkpoint_path)
|
||||
import torchmetrics
|
||||
|
||||
# initialize metric
|
||||
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
|
||||
n_samples = int(len(valid_d) * ratio)
|
||||
|
||||
with tqdm(total=n_samples, desc='Validation Run: ') as pbar:
|
||||
for idx, (valid_batch_x, valid_batch_y) in enumerate(valid_d):
|
||||
valid_batch_x, valid_batch_y = valid_batch_x.to(DEVICE), valid_batch_y.to(DEVICE)
|
||||
y_valid = model(valid_batch_x)
|
||||
|
||||
# metric on current batch
|
||||
acc = validmetric(y_valid.cpu(), valid_batch_y.cpu())
|
||||
pbar.set_postfix_str(f'Acc: {acc}')
|
||||
pbar.update()
|
||||
if idx == n_samples:
|
||||
break
|
||||
|
||||
# metric on all batches using custom accumulation
|
||||
acc = validmetric.compute()
|
||||
tqdm.write(f"Avg. Accuracy on all data: {acc}")
|
||||
return acc
|
||||
|
||||
|
||||
def checkpoint_and_validate(model, out_path, epoch_n, valid_d, final_model=False):
|
||||
out_path = Path(out_path)
|
||||
ckpt_path = set_checkpoint(model, out_path, epoch_n, final_model=final_model)
|
||||
result = validate(ckpt_path, valid_d)
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
training = True
|
||||
train_to_id_first = False
|
||||
train_to_task_first = False
|
||||
seq_task_train = True
|
||||
force_st_for_epochs_n = 5
|
||||
n_st_per_batch = 10
|
||||
activation = None # nn.ReLU()
|
||||
|
||||
use_sparse_network = False
|
||||
|
||||
for weight_hidden_size in [3, 4]:
|
||||
|
||||
tsk_threshold = 0.85
|
||||
weight_hidden_size = weight_hidden_size
|
||||
residual_skip = False
|
||||
n_seeds = 3
|
||||
depth = 3
|
||||
width = 3
|
||||
out = 1
|
||||
|
||||
data_path = Path('data')
|
||||
data_path.mkdir(exist_ok=True, parents=True)
|
||||
assert not (train_to_task_first and train_to_id_first)
|
||||
|
||||
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
||||
s_str = f'_n_{n_st_per_batch}' if n_st_per_batch > 1 else ""
|
||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
||||
sprs_str = '_sprs' if use_sparse_network else ''
|
||||
f_str = f'_f_{force_st_for_epochs_n}' if \
|
||||
force_st_for_epochs_n and seq_task_train and train_to_task_first else ""
|
||||
config_str = f'{s_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
||||
exp_path = Path('output') / f'add_st_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
|
||||
|
||||
if not training:
|
||||
# noinspection PyRedeclaration
|
||||
exp_path = Path('output') / 'mn_st_n_2_100_4'
|
||||
|
||||
for seed in range(n_seeds):
|
||||
seed_path = exp_path / str(seed)
|
||||
|
||||
model_path = seed_path / '0000_trained_model.zip'
|
||||
df_store_path = seed_path / 'train_store.csv'
|
||||
weight_store_path = seed_path / 'weight_store.csv'
|
||||
srnn_parameters = dict()
|
||||
|
||||
if training:
|
||||
# Check if files do exist on project location, warn and break.
|
||||
for path in [model_path, df_store_path, weight_store_path]:
|
||||
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
|
||||
|
||||
train_data = AddTaskDataset()
|
||||
valid_data = AddTaskDataset()
|
||||
train_load = DataLoader(train_data, batch_size=BATCHSIZE, shuffle=True,
|
||||
drop_last=True, num_workers=WORKER)
|
||||
vali_load = DataLoader(valid_data, batch_size=BATCHSIZE, shuffle=False,
|
||||
drop_last=True, num_workers=WORKER)
|
||||
|
||||
interface = np.prod(train_data[0][0].shape)
|
||||
dense_metanet = MetaNet(interface, depth=depth, width=width, out=out,
|
||||
residual_skip=residual_skip, weight_hidden_size=weight_hidden_size,
|
||||
activation=activation
|
||||
).to(DEVICE)
|
||||
sparse_metanet = SparseNetwork(interface, depth=depth, width=width, out=out,
|
||||
residual_skip=residual_skip, weight_hidden_size=weight_hidden_size,
|
||||
activation=activation
|
||||
).to(DEVICE) if use_sparse_network else dense_metanet
|
||||
if use_sparse_network:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
|
||||
loss_fn = nn.MSELoss()
|
||||
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
|
||||
sparse_optimizer = torch.optim.SGD(
|
||||
sparse_metanet.parameters(), lr=0.001, momentum=0.9
|
||||
) if use_sparse_network else dense_optimizer
|
||||
|
||||
dense_weights_updated = False
|
||||
sparse_weights_updated = False
|
||||
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
||||
|
||||
init_tsk = train_to_task_first
|
||||
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
|
||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||
sparse_metanet = sparse_metanet.train()
|
||||
dense_metanet = dense_metanet.train()
|
||||
|
||||
# Init metrics, even we do not need:
|
||||
metric = torchmetrics.MeanAbsoluteError()
|
||||
|
||||
# Define what to train in this epoch:
|
||||
do_tsk_train = train_to_task_first
|
||||
force_st = (force_st_for_epochs_n >= (EPOCH - epoch)) and force_st_for_epochs_n
|
||||
init_st = (train_to_id_first and not dense_metanet.count_fixpoints() > 200)
|
||||
do_st_train = init_st or is_self_train_epoch or force_st
|
||||
|
||||
for batch, (batch_x, batch_y) in tqdm(enumerate(train_load),
|
||||
total=len(train_load), desc='MetaNet Train - Batch'
|
||||
):
|
||||
|
||||
# Self Train
|
||||
if do_st_train:
|
||||
# Transfer weights
|
||||
if dense_weights_updated:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
dense_weights_updated = False
|
||||
st_steps = n_st_per_batch if not init_st else n_st_per_batch * 10
|
||||
step_log = train_self_replication(sparse_metanet, sparse_optimizer, st_steps)
|
||||
step_log.update(dict(Epoch=epoch, Batch=batch))
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if use_sparse_network:
|
||||
sparse_weights_updated = True
|
||||
|
||||
# Task Train
|
||||
if not init_st:
|
||||
# Transfer weights
|
||||
if sparse_weights_updated:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
sparse_weights_updated = False
|
||||
step_log, y_pred = train_task(dense_metanet, dense_optimizer, loss_fn, batch_x, batch_y)
|
||||
|
||||
step_log.update(dict(Epoch=epoch, Batch=batch))
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
if use_sparse_network:
|
||||
dense_weights_updated = True
|
||||
metric(y_pred.cpu(), batch_y.cpu())
|
||||
|
||||
if is_validation_epoch:
|
||||
if sparse_weights_updated:
|
||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||
sparse_weights_updated = False
|
||||
|
||||
dense_metanet = dense_metanet.eval()
|
||||
if do_tsk_train:
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Train Accuracy', Score=metric.compute().item())
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
|
||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch, vali_load).item()
|
||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy)
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
if init_tsk or (train_to_task_first and seq_task_train):
|
||||
init_tsk = accuracy <= tsk_threshold
|
||||
if init_st or is_validation_epoch:
|
||||
if dense_weights_updated:
|
||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||
dense_weights_updated = False
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||
counter_dict = dict(counter_dict)
|
||||
for key, value in counter_dict.items():
|
||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
||||
if sum(x.is_fixpoint == ft.identity_func for x in dense_metanet.particles) > 200:
|
||||
train_to_id_first = False
|
||||
# Reset Diverged particles
|
||||
sparse_metanet.reset_diverged_particles()
|
||||
if use_sparse_network:
|
||||
sparse_weights_updated = True
|
||||
|
||||
# FLUSH to disk
|
||||
if is_validation_epoch:
|
||||
for particle in dense_metanet.particles:
|
||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
train_store = new_storage_df('train', None)
|
||||
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
||||
|
||||
###########################################################
|
||||
# EPOCHS endet
|
||||
dense_metanet = dense_metanet.eval()
|
||||
|
||||
counter_dict = defaultdict(lambda: 0)
|
||||
# This returns ID-functions
|
||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||
for key, value in dict(counter_dict).items():
|
||||
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||
train_store.loc[train_store.shape[0]] = step_log
|
||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, vali_load, final_model=True)
|
||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||
Metric='Test Accuracy', Score=accuracy.item())
|
||||
for particle in dense_metanet.particles:
|
||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||
|
||||
train_store.loc[train_store.shape[0]] = validation_log
|
||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||
|
||||
plot_training_result(df_store_path)
|
||||
plot_training_particle_types(df_store_path)
|
||||
|
||||
try:
|
||||
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
||||
except StopIteration:
|
||||
print('Model pattern did not trigger.')
|
||||
print(f'Search path was: {seed_path}:')
|
||||
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||
exit(1)
|
||||
|
||||
try:
|
||||
run_particle_dropout_and_plot(model_path)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
try:
|
||||
plot_network_connectivity_by_fixtype(model_path)
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
|
||||
if n_seeds >= 2:
|
||||
pass
|
@ -57,7 +57,7 @@ if __name__ == '__main__':
|
||||
multiplication_target = 0.03
|
||||
|
||||
loss_fn = nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
|
||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||
|
||||
train_frame = pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
||||
|
||||
@ -67,7 +67,7 @@ if __name__ == '__main__':
|
||||
mean_batch_loss = []
|
||||
mean_self_tain_loss = []
|
||||
for batch, (batch_x, batch_y) in tenumerate(dataloader):
|
||||
self_train_loss, _ = net.self_train(10, save_history=False)
|
||||
self_train_loss, _ = net.self_train(2, save_history=False)
|
||||
batch_x_emb = torch.zeros(batch_x.shape[0], 5)
|
||||
batch_x_emb[:, -1] = batch_x.squeeze()
|
||||
y = net(batch_x_emb)
|
||||
|
@ -489,6 +489,13 @@ class MetaNet(nn.Module):
|
||||
def all_layers(self):
|
||||
return (x for x in (self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last))
|
||||
|
||||
@property
|
||||
def particle_parameter_count(self):
|
||||
return sum(p.numel() for p in next(self.particles).parameters())
|
||||
|
||||
def count_fixpoints(self, fix_type=FixTypes.identity_func):
|
||||
return sum(x.is_fixpoint == fix_type for x in self.particles)
|
||||
|
||||
def reset_diverged_particles(self):
|
||||
for particle in self.particles:
|
||||
if particle.is_fixpoint == FixTypes.divergent:
|
||||
|
Reference in New Issue
Block a user