2022-03-03 14:57:26 +01:00

317 lines
15 KiB
Python

import platform
import sys
from collections import defaultdict
from pathlib import Path
import numpy as np
import torch
import torchmetrics
from torch import nn
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
# noinspection DuplicatedCode
if platform.node() == 'CarbonX':
debug = True
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
print("@ Warning, Debugging Config@!!!!!! @")
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
else:
debug = False
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(DIR.parent))
__package__ = DIR.name
else:
DIR = None
except NameError:
DIR = None
pass
from network import MetaNet, FixTypes as ft
from sparse_net import SparseNetwork
from functionalities_test import test_for_fixpoints
from experiments.meta_task_exp import new_storage_df, train_self_replication, train_task, set_checkpoint, \
flat_for_store, plot_training_result, plot_training_particle_types, run_particle_dropout_and_plot, \
plot_network_connectivity_by_fixtype
WORKER = 10 if not debug else 2
debug = False
BATCHSIZE = 50 if not debug else 50
EPOCH = 10
VALIDATION_FRQ = 1 if not debug else 1
SELF_TRAIN_FRQ = 1 if not debug else 1
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class AddTaskDataset(Dataset):
def __init__(self, length=int(1e5)):
super().__init__()
self.length = length
def __len__(self):
return self.length
def __getitem__(self, _):
ab = torch.randn(size=(2,)).to(torch.float32)
return ab, ab.sum(axis=-1, keepdims=True)
def validate(checkpoint_path, valid_d, ratio=1, validmetric=torchmetrics.MeanAbsoluteError()):
checkpoint_path = Path(checkpoint_path)
import torchmetrics
# initialize metric
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
n_samples = int(len(valid_d) * ratio)
with tqdm(total=n_samples, desc='Validation Run: ') as pbar:
for idx, (valid_batch_x, valid_batch_y) in enumerate(valid_d):
valid_batch_x, valid_batch_y = valid_batch_x.to(DEVICE), valid_batch_y.to(DEVICE)
y_valid = model(valid_batch_x)
# metric on current batch
acc = validmetric(y_valid.cpu(), valid_batch_y.cpu())
pbar.set_postfix_str(f'Acc: {acc}')
pbar.update()
if idx == n_samples:
break
# metric on all batches using custom accumulation
acc = validmetric.compute()
tqdm.write(f"Avg. Accuracy on all data: {acc}")
return acc
def checkpoint_and_validate(model, out_path, epoch_n, valid_d, final_model=False):
out_path = Path(out_path)
ckpt_path = set_checkpoint(model, out_path, epoch_n, final_model=final_model)
result = validate(ckpt_path, valid_d)
return result
if __name__ == '__main__':
training = True
train_to_id_first = False
train_to_task_first = False
seq_task_train = True
force_st_for_epochs_n = 5
n_st_per_batch = 10
activation = None # nn.ReLU()
use_sparse_network = False
for weight_hidden_size in [3, 4]:
tsk_threshold = 0.85
weight_hidden_size = weight_hidden_size
residual_skip = False
n_seeds = 3
depth = 3
width = 3
out = 1
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
assert not (train_to_task_first and train_to_id_first)
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
s_str = f'_n_{n_st_per_batch}' if n_st_per_batch > 1 else ""
res_str = f'{"" if residual_skip else "_no_res"}'
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
id_str = f'{f"_StToId" if train_to_id_first else ""}'
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
sprs_str = '_sprs' if use_sparse_network else ''
f_str = f'_f_{force_st_for_epochs_n}' if \
force_st_for_epochs_n and seq_task_train and train_to_task_first else ""
config_str = f'{s_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
exp_path = Path('output') / f'add_st_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
if not training:
# noinspection PyRedeclaration
exp_path = Path('output') / 'mn_st_n_2_100_4'
for seed in range(n_seeds):
seed_path = exp_path / str(seed)
model_path = seed_path / '0000_trained_model.zip'
df_store_path = seed_path / 'train_store.csv'
weight_store_path = seed_path / 'weight_store.csv'
srnn_parameters = dict()
if training:
# Check if files do exist on project location, warn and break.
for path in [model_path, df_store_path, weight_store_path]:
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
train_data = AddTaskDataset()
valid_data = AddTaskDataset()
train_load = DataLoader(train_data, batch_size=BATCHSIZE, shuffle=True,
drop_last=True, num_workers=WORKER)
vali_load = DataLoader(valid_data, batch_size=BATCHSIZE, shuffle=False,
drop_last=True, num_workers=WORKER)
interface = np.prod(train_data[0][0].shape)
dense_metanet = MetaNet(interface, depth=depth, width=width, out=out,
residual_skip=residual_skip, weight_hidden_size=weight_hidden_size,
activation=activation
).to(DEVICE)
sparse_metanet = SparseNetwork(interface, depth=depth, width=width, out=out,
residual_skip=residual_skip, weight_hidden_size=weight_hidden_size,
activation=activation
).to(DEVICE) if use_sparse_network else dense_metanet
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
loss_fn = nn.MSELoss()
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
sparse_optimizer = torch.optim.SGD(
sparse_metanet.parameters(), lr=0.001, momentum=0.9
) if use_sparse_network else dense_optimizer
dense_weights_updated = False
sparse_weights_updated = False
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
init_tsk = train_to_task_first
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
sparse_metanet = sparse_metanet.train()
dense_metanet = dense_metanet.train()
# Init metrics, even we do not need:
metric = torchmetrics.MeanAbsoluteError()
# Define what to train in this epoch:
do_tsk_train = train_to_task_first
force_st = (force_st_for_epochs_n >= (EPOCH - epoch)) and force_st_for_epochs_n
init_st = (train_to_id_first and not dense_metanet.count_fixpoints() > 200)
do_st_train = init_st or is_self_train_epoch or force_st
for batch, (batch_x, batch_y) in tqdm(enumerate(train_load),
total=len(train_load), desc='MetaNet Train - Batch'
):
# Self Train
if do_st_train:
# Transfer weights
if dense_weights_updated:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
dense_weights_updated = False
st_steps = n_st_per_batch if not init_st else n_st_per_batch * 10
step_log = train_self_replication(sparse_metanet, sparse_optimizer, st_steps)
step_log.update(dict(Epoch=epoch, Batch=batch))
train_store.loc[train_store.shape[0]] = step_log
if use_sparse_network:
sparse_weights_updated = True
# Task Train
if not init_st:
# Transfer weights
if sparse_weights_updated:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
sparse_weights_updated = False
step_log, y_pred = train_task(dense_metanet, dense_optimizer, loss_fn, batch_x, batch_y)
step_log.update(dict(Epoch=epoch, Batch=batch))
train_store.loc[train_store.shape[0]] = step_log
if use_sparse_network:
dense_weights_updated = True
metric(y_pred.cpu(), batch_y.cpu())
if is_validation_epoch:
if sparse_weights_updated:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
sparse_weights_updated = False
dense_metanet = dense_metanet.eval()
if do_tsk_train:
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch, vali_load).item()
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy)
train_store.loc[train_store.shape[0]] = validation_log
if init_tsk or (train_to_task_first and seq_task_train):
init_tsk = accuracy <= tsk_threshold
if init_st or is_validation_epoch:
if dense_weights_updated:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
dense_weights_updated = False
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
counter_dict = dict(counter_dict)
for key, value in counter_dict.items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
if sum(x.is_fixpoint == ft.identity_func for x in dense_metanet.particles) > 200:
train_to_id_first = False
# Reset Diverged particles
sparse_metanet.reset_diverged_particles()
if use_sparse_network:
sparse_weights_updated = True
# FLUSH to disk
if is_validation_epoch:
for particle in dense_metanet.particles:
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
###########################################################
# EPOCHS endet
dense_metanet = dense_metanet.eval()
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, vali_load, final_model=True)
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
for particle in dense_metanet.particles:
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.loc[train_store.shape[0]] = validation_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
plot_training_result(df_store_path)
plot_training_particle_types(df_store_path)
try:
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
except StopIteration:
print('Model pattern did not trigger.')
print(f'Search path was: {seed_path}:')
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
exit(1)
try:
run_particle_dropout_and_plot(model_path)
except ValueError as e:
print(e)
try:
plot_network_connectivity_by_fixtype(model_path)
except ValueError as e:
print(e)
if n_seeds >= 2:
pass