539 lines
23 KiB
Python
539 lines
23 KiB
Python
import pickle
|
|
import re
|
|
import shutil
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
import sys
|
|
import platform
|
|
|
|
import pandas as pd
|
|
import torchmetrics
|
|
import numpy as np
|
|
import torch
|
|
from matplotlib import pyplot as plt
|
|
import seaborn as sns
|
|
from torch import nn
|
|
from torch.nn import Flatten
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torchvision.datasets import MNIST
|
|
from torchvision.transforms import ToTensor, Compose, Resize
|
|
from tqdm import tqdm, trange
|
|
|
|
# noinspection DuplicatedCode
|
|
if platform.node() == 'CarbonX':
|
|
debug = True
|
|
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
|
print("@ Warning, Debugging Config@!!!!!! @")
|
|
print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
|
|
else:
|
|
debug = False
|
|
try:
|
|
# noinspection PyUnboundLocalVariable
|
|
if __package__ is None:
|
|
DIR = Path(__file__).resolve().parent
|
|
sys.path.insert(0, str(DIR.parent))
|
|
__package__ = DIR.name
|
|
else:
|
|
DIR = None
|
|
except NameError:
|
|
DIR = None
|
|
pass
|
|
|
|
from network import MetaNet, FixTypes as ft
|
|
from sparse_net import SparseNetwork
|
|
from functionalities_test import test_for_fixpoints
|
|
|
|
WORKER = 10 if not debug else 2
|
|
debug = False
|
|
BATCHSIZE = 500 if not debug else 50
|
|
EPOCH = 50
|
|
VALIDATION_FRQ = 3 if not debug else 1
|
|
SELF_TRAIN_FRQ = 1 if not debug else 1
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
DATA_PATH = Path('data')
|
|
DATA_PATH.mkdir(exist_ok=True, parents=True)
|
|
|
|
if debug:
|
|
torch.autograd.set_detect_anomaly(True)
|
|
|
|
|
|
class ToFloat:
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __call__(self, x):
|
|
return x.to(torch.float32)
|
|
|
|
|
|
class AddTaskDataset(Dataset):
|
|
def __init__(self, length=int(5e5)):
|
|
super().__init__()
|
|
self.length = length
|
|
self.prng = np.random.default_rng()
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
def __getitem__(self, _):
|
|
ab = self.prng.normal(size=(2,)).astype(np.float32)
|
|
return ab, ab.sum(axis=-1, keepdims=True)
|
|
|
|
|
|
def set_checkpoint(model, out_path, epoch_n, final_model=False):
|
|
epoch_n = str(epoch_n)
|
|
if not final_model:
|
|
ckpt_path = Path(out_path) / 'ckpt' / f'{epoch_n.zfill(4)}_model_ckpt.tp'
|
|
else:
|
|
ckpt_path = Path(out_path) / f'trained_model_ckpt_e{epoch_n}.tp'
|
|
ckpt_path.parent.mkdir(exist_ok=True, parents=True)
|
|
|
|
torch.save(model, ckpt_path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
|
|
py_store_path = Path(out_path) / 'exp_py.txt'
|
|
if not py_store_path.exists():
|
|
shutil.copy(__file__, py_store_path)
|
|
return ckpt_path
|
|
|
|
|
|
def validate(checkpoint_path, ratio=0.1):
|
|
checkpoint_path = Path(checkpoint_path)
|
|
import torchmetrics
|
|
|
|
# initialize metric
|
|
validmetric = torchmetrics.Accuracy()
|
|
ut = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
|
|
|
try:
|
|
datas = MNIST(str(DATA_PATH), transform=ut, train=False)
|
|
except RuntimeError:
|
|
datas = MNIST(str(DATA_PATH), transform=ut, train=False, download=True)
|
|
valid_d = DataLoader(datas, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
|
|
|
model = torch.load(checkpoint_path, map_location=DEVICE).eval()
|
|
n_samples = int(len(valid_d) * ratio)
|
|
|
|
with tqdm(total=n_samples, desc='Validation Run: ') as pbar:
|
|
for idx, (valid_batch_x, valid_batch_y) in enumerate(valid_d):
|
|
valid_batch_x, valid_batch_y = valid_batch_x.to(DEVICE), valid_batch_y.to(DEVICE)
|
|
y_valid = model(valid_batch_x)
|
|
|
|
# metric on current batch
|
|
acc = validmetric(y_valid.cpu(), valid_batch_y.cpu())
|
|
pbar.set_postfix_str(f'Acc: {acc}')
|
|
pbar.update()
|
|
if idx == n_samples:
|
|
break
|
|
|
|
# metric on all batches using custom accumulation
|
|
acc = validmetric.compute()
|
|
tqdm.write(f"Avg. accuracy on all data: {acc}")
|
|
return acc
|
|
|
|
|
|
def new_storage_df(identifier, weight_count):
|
|
if identifier == 'train':
|
|
return pd.DataFrame(columns=['Epoch', 'Batch', 'Metric', 'Score'])
|
|
elif identifier == 'weights':
|
|
return pd.DataFrame(columns=['Epoch', 'Weight', *(f'weight_{x}' for x in range(weight_count))])
|
|
|
|
|
|
def checkpoint_and_validate(model, out_path, epoch_n, final_model=False):
|
|
out_path = Path(out_path)
|
|
ckpt_path = set_checkpoint(model, out_path, epoch_n, final_model=final_model)
|
|
result = validate(ckpt_path)
|
|
return result
|
|
|
|
|
|
def plot_training_particle_types(path_to_dataframe):
|
|
plt.clf()
|
|
# load from Drive
|
|
df = pd.read_csv(path_to_dataframe, index_col=False)
|
|
# Set up figure
|
|
fig, ax = plt.subplots() # initializes figure and plots
|
|
data = df.loc[df['Metric'].isin(ft.all_types())]
|
|
fix_types = data['Metric'].unique()
|
|
data = data.pivot(index='Epoch', columns='Metric', values='Score').reset_index().fillna(0)
|
|
_ = plt.stackplot(data['Epoch'], *[data[fixtype] for fixtype in fix_types], labels=fix_types.tolist())
|
|
|
|
ax.set(ylabel='Particle Count', xlabel='Epoch')
|
|
ax.set_title('Particle Type Count')
|
|
|
|
fig.legend(loc="center right", title='Particle Type', bbox_to_anchor=(0.85, 0.5))
|
|
plt.tight_layout()
|
|
if debug:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(Path(path_to_dataframe.parent / 'training_particle_type_lp.png'), dpi=300)
|
|
|
|
|
|
def plot_training_result(path_to_dataframe):
|
|
plt.clf()
|
|
# load from Drive
|
|
df = pd.read_csv(path_to_dataframe, index_col=False)
|
|
|
|
# Set up figure
|
|
fig, ax1 = plt.subplots() # initializes figure and plots
|
|
ax2 = ax1.twinx() # applies twinx to ax2, which is the second y-axis.
|
|
|
|
# plots the first set of data
|
|
data = df[(df['Metric'] == 'Task Loss') | (df['Metric'] == 'Self Train Loss')].groupby(['Epoch', 'Metric']).mean()
|
|
palette = sns.color_palette()[1:data.reset_index()['Metric'].unique().shape[0]+1]
|
|
sns.lineplot(data=data.groupby(['Epoch', 'Metric']).mean(), x='Epoch', y='Score', hue='Metric',
|
|
palette=palette, ax=ax1)
|
|
|
|
# plots the second set of data
|
|
data = df[(df['Metric'] == 'Test Accuracy') | (df['Metric'] == 'Train Accuracy')]
|
|
palette = sns.color_palette()[len(palette)+1:data.reset_index()['Metric'].unique().shape[0] + len(palette)+1]
|
|
sns.lineplot(data=data, x='Epoch', y='Score', marker='o', hue='Metric', palette=palette)
|
|
|
|
ax1.set(yscale='log', ylabel='Losses')
|
|
ax1.set_title('Training Lineplot')
|
|
ax2.set(ylabel='Accuracy')
|
|
|
|
fig.legend(loc="center right", title='Metric', bbox_to_anchor=(0.85, 0.5))
|
|
ax1.get_legend().remove()
|
|
ax2.get_legend().remove()
|
|
plt.tight_layout()
|
|
if debug:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(Path(path_to_dataframe.parent / 'training_lineplot.png'), dpi=300)
|
|
|
|
|
|
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
|
m = torch.load(path_to_trained_model, map_location=torch.device('cpu')).eval()
|
|
# noinspection PyProtectedMember
|
|
particles = list(m.particles)
|
|
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
|
|
|
for prtcl in particles:
|
|
l, c, w = [float(x) for x in re.sub("[^0-9|_]", "", prtcl.name).split('_')]
|
|
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l-1, w, prtcl.name)
|
|
df.loc[df.shape[0]] = (prtcl.is_fixpoint, l, c, prtcl.name)
|
|
for layer in list(df['layer'].unique()):
|
|
# Rescale
|
|
divisor = df.loc[(df['layer'] == layer), 'neuron'].max()
|
|
df.loc[(df['layer'] == layer), 'neuron'] /= divisor
|
|
|
|
tqdm.write(f'Connectivity Data gathered')
|
|
for n, fixtype in enumerate(ft.all_types()):
|
|
if df[df['type'] == fixtype].shape[0] > 0:
|
|
plt.clf()
|
|
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
|
legend=False, estimator=None, lw=1)
|
|
_ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0)
|
|
ax.set_title(fixtype)
|
|
lines = ax.get_lines()
|
|
for line in lines:
|
|
line.set_color(sns.color_palette()[n])
|
|
if debug:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300)
|
|
tqdm.write(f'Connectivity plottet: {fixtype} - n = {df[df["type"] == fixtype].shape[0]}')
|
|
else:
|
|
tqdm.write(f'No Connectivity {fixtype}')
|
|
|
|
|
|
def run_particle_dropout_test(model_path):
|
|
diff_store_path = model_path.parent / 'diff_store.csv'
|
|
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
|
prtcl_dict = defaultdict(lambda: 0)
|
|
_ = test_for_fixpoints(prtcl_dict, list(latest_model.particles))
|
|
tqdm.write(str(dict(prtcl_dict)))
|
|
diff_df = pd.DataFrame(columns=['Particle Type', 'Accuracy', 'Diff'])
|
|
|
|
acc_pre = validate(model_path, ratio=1).item()
|
|
diff_df.loc[diff_df.shape[0]] = ('All Organism', acc_pre, 0)
|
|
|
|
for fixpoint_type in ft.all_types():
|
|
new_model = torch.load(model_path, map_location=DEVICE).eval().replace_with_zero(fixpoint_type)
|
|
if [x for x in new_model.particles if x.is_fixpoint == fixpoint_type]:
|
|
new_ckpt = set_checkpoint(new_model, model_path.parent, fixpoint_type, final_model=True)
|
|
acc_post = validate(new_ckpt, ratio=1).item()
|
|
acc_diff = abs(acc_post - acc_pre)
|
|
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
|
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
|
|
|
diff_df.to_csv(diff_store_path, mode='a', header=not diff_store_path.exists(), index=False)
|
|
return diff_store_path
|
|
|
|
|
|
def plot_dropout_stacked_barplot(model_path):
|
|
diff_store_path = model_path.parent / 'diff_store.csv'
|
|
diff_df = pd.read_csv(diff_store_path)
|
|
particle_dict = defaultdict(lambda: 0)
|
|
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
|
_ = test_for_fixpoints(particle_dict, list(latest_model.particles))
|
|
tqdm.write(str(dict(particle_dict)))
|
|
plt.clf()
|
|
fig, ax = plt.subplots(ncols=2)
|
|
colors = sns.color_palette()[1:diff_df.shape[0]+1]
|
|
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', ax=ax[0], palette=colors)
|
|
# noinspection PyUnboundLocalVariable
|
|
#for idx, patch in enumerate(barplot.patches):
|
|
# if idx != 0:
|
|
# # we recenter the bar
|
|
# patch.set_x(patch.get_x() + idx * 0.035)
|
|
|
|
ax[0].set_title('Accuracy after particle dropout')
|
|
ax[0].set_xlabel('Particle Type')
|
|
|
|
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=list(reversed(colors)), )
|
|
ax[1].set_title('Particle Count')
|
|
|
|
plt.tight_layout()
|
|
if debug:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(Path(diff_store_path.parent / 'dropout_stacked_barplot.png'), dpi=300)
|
|
|
|
|
|
def run_particle_dropout_and_plot(model_path):
|
|
diff_store_path = run_particle_dropout_test(model_path)
|
|
plot_dropout_stacked_barplot(diff_store_path)
|
|
|
|
|
|
def flat_for_store(parameters):
|
|
return (x.item() for y in parameters for x in y.detach().flatten())
|
|
|
|
|
|
def train_self_replication(model, optimizer, st_steps) -> dict:
|
|
for _ in range(st_steps):
|
|
self_train_loss = model.combined_self_train(optimizer)
|
|
# noinspection PyUnboundLocalVariable
|
|
step_log = dict(Metric='Self Train Loss', Score=self_train_loss.item())
|
|
return step_log
|
|
|
|
|
|
def train_task(model, optimizer, loss_func, btch_x, btch_y) -> (dict, torch.Tensor):
|
|
# Zero your gradients for every batch!
|
|
optimizer.zero_grad()
|
|
btch_x, btch_y = btch_x.to(DEVICE), btch_y.to(DEVICE)
|
|
y_prd = model(btch_x)
|
|
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
|
loss = loss_func(y_prd, btch_y.to(torch.float))
|
|
loss.backward()
|
|
|
|
# Adjust learning weights
|
|
optimizer.step()
|
|
|
|
stp_log = dict(Metric='Task Loss', Score=loss.item())
|
|
|
|
return stp_log, y_prd
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
training = True
|
|
train_to_id_first = True
|
|
train_to_task_first = False
|
|
seq_task_train = True
|
|
force_st_for_epochs_n = 5
|
|
n_st_per_batch = 2
|
|
activation = None # nn.ReLU()
|
|
|
|
use_sparse_network = False
|
|
|
|
for weight_hidden_size in [4, 5, 6]:
|
|
|
|
tsk_threshold = 0.85
|
|
weight_hidden_size = weight_hidden_size
|
|
residual_skip = False
|
|
n_seeds = 3
|
|
depth = 3
|
|
|
|
assert not (train_to_task_first and train_to_id_first)
|
|
|
|
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
|
res_str = f'{"" if residual_skip else "_no_res"}'
|
|
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
|
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
|
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
|
sprs_str = '_sprs' if use_sparse_network else ''
|
|
f_str = f'_f_{force_st_for_epochs_n}' if \
|
|
force_st_for_epochs_n and seq_task_train and train_to_task_first else ""
|
|
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
|
exp_path = Path('output') / f'mn_st_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
|
|
|
|
if not training:
|
|
# noinspection PyRedeclaration
|
|
exp_path = Path('output') / 'mn_st_n_2_100_4'
|
|
|
|
for seed in range(n_seeds):
|
|
seed_path = exp_path / str(seed)
|
|
|
|
model_path = seed_path / '0000_trained_model.zip'
|
|
df_store_path = seed_path / 'train_store.csv'
|
|
weight_store_path = seed_path / 'weight_store.csv'
|
|
srnn_parameters = dict()
|
|
|
|
if training:
|
|
# Check if files do exist on project location, warn and break.
|
|
for path in [model_path, df_store_path, weight_store_path]:
|
|
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
|
|
|
|
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
|
try:
|
|
dataset = MNIST(str(DATA_PATH), transform=utility_transforms)
|
|
except RuntimeError:
|
|
dataset = MNIST(str(DATA_PATH), transform=utility_transforms, download=True)
|
|
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
|
|
|
interface = np.prod(dataset[0][0].shape)
|
|
dense_metanet = MetaNet(interface, depth=depth, width=6, out=10, residual_skip=residual_skip,
|
|
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
|
|
sparse_metanet = SparseNetwork(interface, depth=depth, width=6, out=10, residual_skip=residual_skip,
|
|
weight_hidden_size=weight_hidden_size, activation=activation
|
|
).to(DEVICE) if use_sparse_network else dense_metanet
|
|
if use_sparse_network:
|
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
|
|
|
loss_fn = nn.CrossEntropyLoss()
|
|
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
|
|
sparse_optimizer = torch.optim.SGD(
|
|
sparse_metanet.parameters(), lr=0.001, momentum=0.9
|
|
) if use_sparse_network else dense_optimizer
|
|
|
|
dense_weights_updated = False
|
|
sparse_weights_updated = False
|
|
|
|
train_store = new_storage_df('train', None)
|
|
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
|
|
|
init_tsk = train_to_task_first
|
|
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
|
|
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
|
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
|
sparse_metanet = sparse_metanet.train()
|
|
dense_metanet = dense_metanet.train()
|
|
|
|
# Init metrics, even we do not need:
|
|
metric = torchmetrics.Accuracy()
|
|
|
|
# Define what to train in this epoch:
|
|
do_tsk_train = train_to_task_first
|
|
force_st = (force_st_for_epochs_n >= (EPOCH - epoch)) and force_st_for_epochs_n
|
|
init_st = (train_to_id_first and not dense_metanet.count_fixpoints() > 200)
|
|
do_st_train = init_st or is_self_train_epoch or force_st
|
|
|
|
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
|
|
|
# Self Train
|
|
if do_st_train:
|
|
# Transfer weights
|
|
if dense_weights_updated:
|
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
|
dense_weights_updated = False
|
|
st_steps = n_st_per_batch if not init_st else n_st_per_batch * 10
|
|
step_log = train_self_replication(sparse_metanet, sparse_optimizer, st_steps)
|
|
step_log.update(dict(Epoch=epoch, Batch=batch))
|
|
train_store.loc[train_store.shape[0]] = step_log
|
|
if use_sparse_network:
|
|
sparse_weights_updated = True
|
|
|
|
# Task Train
|
|
if not init_st:
|
|
# Transfer weights
|
|
if sparse_weights_updated:
|
|
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
|
sparse_weights_updated = False
|
|
step_log, y_pred = train_task(dense_metanet, dense_optimizer, loss_fn, batch_x, batch_y)
|
|
|
|
step_log.update(dict(Epoch=epoch, Batch=batch))
|
|
train_store.loc[train_store.shape[0]] = step_log
|
|
if use_sparse_network:
|
|
dense_weights_updated = True
|
|
metric(y_pred.cpu(), batch_y.cpu())
|
|
|
|
if is_validation_epoch:
|
|
if sparse_weights_updated:
|
|
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
|
sparse_weights_updated = False
|
|
|
|
dense_metanet = dense_metanet.eval()
|
|
if do_tsk_train:
|
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
|
Metric='Train Accuracy', Score=metric.compute().item())
|
|
train_store.loc[train_store.shape[0]] = validation_log
|
|
|
|
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
|
Metric='Test Accuracy', Score=accuracy)
|
|
train_store.loc[train_store.shape[0]] = validation_log
|
|
if init_tsk or (train_to_task_first and seq_task_train):
|
|
init_tsk = accuracy <= tsk_threshold
|
|
if init_st or is_validation_epoch:
|
|
if dense_weights_updated:
|
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
|
dense_weights_updated = False
|
|
counter_dict = defaultdict(lambda: 0)
|
|
# This returns ID-functions
|
|
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
|
counter_dict = dict(counter_dict)
|
|
for key, value in counter_dict.items():
|
|
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
|
train_store.loc[train_store.shape[0]] = step_log
|
|
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
|
if sum(x.is_fixpoint == ft.identity_func for x in dense_metanet.particles) > 200:
|
|
train_to_id_first = False
|
|
# Reset Diverged particles
|
|
sparse_metanet.reset_diverged_particles()
|
|
if use_sparse_network:
|
|
sparse_weights_updated = True
|
|
|
|
# FLUSH to disk
|
|
if is_validation_epoch:
|
|
for particle in dense_metanet.particles:
|
|
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
|
train_store = new_storage_df('train', None)
|
|
weight_store = new_storage_df('weights', dense_metanet.particle_parameter_count)
|
|
|
|
###########################################################
|
|
# EPOCHS endet
|
|
dense_metanet = dense_metanet.eval()
|
|
|
|
counter_dict = defaultdict(lambda: 0)
|
|
# This returns ID-functions
|
|
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
|
for key, value in dict(counter_dict).items():
|
|
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
|
train_store.loc[train_store.shape[0]] = step_log
|
|
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True)
|
|
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
|
Metric='Test Accuracy', Score=accuracy.item())
|
|
for particle in dense_metanet.particles:
|
|
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
|
|
|
train_store.loc[train_store.shape[0]] = validation_log
|
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
|
|
|
plot_training_result(df_store_path)
|
|
plot_training_particle_types(df_store_path)
|
|
|
|
try:
|
|
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
|
except StopIteration:
|
|
print('Model pattern did not trigger.')
|
|
print(f'Search path was: {seed_path}:')
|
|
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
|
exit(1)
|
|
|
|
try:
|
|
run_particle_dropout_and_plot(seed_path)
|
|
except ValueError as e:
|
|
print(e)
|
|
try:
|
|
plot_network_connectivity_by_fixtype(model_path)
|
|
except ValueError as e:
|
|
print(e)
|
|
|
|
if n_seeds >= 2:
|
|
pass
|