in between upload

This commit is contained in:
Steffen Illium 2022-02-27 17:56:25 +01:00
parent 78a919395b
commit 926b27b4ef
3 changed files with 167 additions and 104 deletions

View File

@ -16,7 +16,7 @@ from torch.nn import Flatten
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Resize
from tqdm import tqdm
from tqdm import tqdm, trange
# noinspection DuplicatedCode
if platform.node() == 'CarbonX':
@ -46,7 +46,7 @@ WORKER = 10 if not debug else 2
debug = False
BATCHSIZE = 500 if not debug else 50
EPOCH = 100
VALIDATION_FRQ = 4 if not debug else 1
VALIDATION_FRQ = 3 if not debug else 1
SELF_TRAIN_FRQ = 1 if not debug else 1
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@ -292,24 +292,23 @@ if __name__ == '__main__':
train_to_task_first = False
sequential_task_train = True
force_st_for_n_from_last_epochs = 5
n_st_per_batch = 3
activation = None # nn.ReLU()
n_st_per_batch = 10
# activation = None # nn.ReLU()
use_sparse_network = False
use_sparse_network = True
for weight_hidden_size in [8]:
for weight_hidden_size in [4, 5, 6]:
tsk_threshold = 0.85
weight_hidden_size = weight_hidden_size
residual_skip = True
n_seeds = 3
n_seeds = 1
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
assert not (train_to_task_first and train_to_id_first)
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
# ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
res_str = f'{"" if residual_skip else "_no_res"}'
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
id_str = f'{f"_StToId" if train_to_id_first else ""}'
@ -318,7 +317,7 @@ if __name__ == '__main__':
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
if not training:
# noinspection PyRedeclaration
@ -326,10 +325,12 @@ if __name__ == '__main__':
for seed in range(n_seeds):
seed_path = exp_path / str(seed)
seed_path.mkdir(exist_ok=True, parents=True)
model_path = seed_path / '0000_trained_model.zip'
df_store_path = seed_path / 'train_store.csv'
weight_store_path = seed_path / 'weight_store.csv'
init_st_store_path = seed_path / 'init_st_counter.csv'
srnn_parameters = dict()
if training:
@ -345,92 +346,139 @@ if __name__ == '__main__':
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
interface = np.prod(dataset[0][0].shape)
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size, activation=activation
dense_metanet = MetaNet(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size
).to(DEVICE)
sparse_metanet = SparseNetwork(interface, depth=3, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size
).to(DEVICE) if use_sparse_network else dense_metanet
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
loss_fn = nn.CrossEntropyLoss()
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.004, momentum=0.9)
sparse_optimizer = torch.optim.SGD(
sparse_metanet.parameters(), lr=0.004, momentum=0.9
) if use_sparse_network else dense_optimizer
optimizer = torch.optim.SGD(sparse_metanet.parameters(), lr=0.004, momentum=0.9)
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)
init_tsk = train_to_task_first
for epoch in tqdm(range(EPOCH), desc=f'Train - Epochs'):
if train_to_task_first:
dense_metanet = dense_metanet.train()
for epoch in trange(10):
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
# Task Train
# Zero your gradients for every batch!
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y_pred = dense_metanet(batch_x)
loss = loss_fn(y_pred, batch_y.to(torch.long))
loss.backward()
# Adjust learning weights
optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
# Transfer weights
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
if train_to_id_first:
sparse_metanet = sparse_metanet.train()
init_st_epochs = 1500
init_st_df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
for st_epoch in trange(init_st_epochs):
_ = sparse_metanet.combined_self_train(optimizer)
if st_epoch % 500 == 0:
counter = defaultdict(lambda: 0)
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {st_epoch} self-train epochs: {counter}")
for key, value in counter.items():
init_st_df.loc[init_st_df.shape[0]] = (st_epoch, key, value)
sparse_metanet.reset_diverged_particles()
counter = defaultdict(lambda: 0)
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {init_st_epochs} self-train epochs: {counter}")
for key, value in counter.items():
init_st_df.loc[init_st_df.shape[0]] = (init_st_epochs, key, value)
init_st_df.to_csv(init_st_store_path, mode='w', index=False)
c = pd.read_csv(init_st_store_path)
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
plt.savefig(init_st_store_path.parent / f'{init_st_store_path.stem}.png', dpi=300)
# Transfer weights
if use_sparse_network:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
for epoch in trange(EPOCH, desc=f'Train - Epochs'):
tqdm.write(f'{seed}: {exp_path}')
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
is_validation_epoch = (epoch % VALIDATION_FRQ == 0) if not debug else True
is_self_train_epoch = (epoch % SELF_TRAIN_FRQ == 0) if not debug else True
sparse_metanet = sparse_metanet.train()
dense_metanet = dense_metanet.train()
if is_validation_epoch:
metric = torchmetrics.Accuracy()
else:
metric = None
init_st = train_to_id_first and not all(
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
)
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
) and sequential_task_train and force_st_for_n_from_last_epochs
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='Train - Batch'):
# Self Train
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
# Transfer weights
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
if is_self_train_epoch:
for _ in range(n_st_per_batch):
self_train_loss = sparse_metanet.combined_self_train(sparse_optimizer, reduction='mean')
self_train_loss = sparse_metanet.combined_self_train(optimizer)
# noinspection PyUnboundLocalVariable
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Self Train Loss', Score=self_train_loss.item())
train_store.loc[train_store.shape[0]] = step_log
# Clean Divergent
sparse_metanet.reset_diverged_particles()
# Transfer weights
if use_sparse_network:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
dense_metanet.reset_diverged_particles()
# Task Train
if not init_st:
# Zero your gradients for every batch!
dense_optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y_pred = dense_metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y_pred, batch_y.to(torch.long))
loss.backward()
# Zero your gradients for every batch!
optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y_pred = dense_metanet(batch_x)
# Adjust learning weights
dense_optimizer.step()
loss = loss_fn(y_pred, batch_y.to(torch.long))
loss.backward()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y_pred.cpu(), batch_y.cpu())
# Adjust learning weights
optimizer.step()
# Transfer weights
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y_pred.cpu(), batch_y.cpu())
if batch >= 3 and debug:
break
if is_validation_epoch:
dense_metanet = dense_metanet.eval()
if not init_st:
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy)
train_store.loc[train_store.shape[0]] = validation_log
if init_tsk or (train_to_task_first and sequential_task_train):
init_tsk = accuracy <= tsk_threshold
if init_st or is_validation_epoch:
if is_validation_epoch:
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
@ -439,12 +487,14 @@ if __name__ == '__main__':
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
if init_st or is_validation_epoch:
for particle in dense_metanet.particles:
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(),
index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(),
index=False)
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)

View File

@ -445,10 +445,12 @@ class MetaNet(nn.Module):
tensor = self._meta_layer_first(x)
residual = None
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
if idx % 2 == 1 and self.residual_skip:
# if idx % 2 == 1 and self.residual_skip:
if self.residual_skip:
residual = tensor
tensor = meta_layer(tensor)
if idx % 2 == 0 and self.residual_skip:
# if idx % 2 == 0 and self.residual_skip:
if self.residual_skip:
tensor = tensor + residual
tensor = self._meta_layer_last(tensor)
return tensor

View File

@ -1,25 +1,29 @@
from collections import defaultdict
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
from torch import nn
import functionalities_test
from network import Net
from functionalities_test import is_identity_function
from tqdm import tqdm,trange
from functionalities_test import is_identity_function, test_for_fixpoints, epsilon_error_margin
from tqdm import tqdm, trange
import numpy as np
from pathlib import Path
import torch
from torch.nn import Flatten
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Resize
def xavier_init(m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight.data)
return nn.init.xavier_uniform_(m.weight.data)
if isinstance(m, torch.Tensor):
return nn.init.xavier_uniform_(m)
class SparseLayer(nn.Module):
@ -101,7 +105,9 @@ class SparseLayer(nn.Module):
for weights in self.weights:
if torch.isinf(weights).any() or torch.isnan(weights).any():
with torch.no_grad():
xavier_init(weights)
where_nan = torch.nan_to_num(weights, -99, -99, -99)
mask = torch.where(where_nan == -99, 0, 1)
weights[:] = (where_nan * mask + torch.randn_like(weights) * (1 - mask))[:]
@property
def particle_weights(self):
@ -139,8 +145,9 @@ def test_sparse_layer():
optimizer = torch.optim.SGD(net.parameters(), lr=0.008, momentum=0.9)
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
train_iterations = 20000
for train_iteration in trange(20000):
for train_iteration in trange(train_iterations):
optimizer.zero_grad()
X, Y = net.get_self_train_inputs_and_targets()
output = net(X)
@ -163,12 +170,11 @@ def test_sparse_layer():
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
tqdm.write(f"identity_fn after {train_iterations} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (train_iteration, key, value)
df.loc[df.shape[0]] = (train_iterations, key, value)
df.to_csv('counter.csv', mode='w')
import seaborn as sns
import matplotlib.pyplot as plt
c = pd.read_csv('counter.csv', index_col=0)
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
plt.savefig('counter.png', dpi=300)
@ -191,6 +197,11 @@ def embed_vector(x, repeat_dim):
class SparseNetwork(nn.Module):
@property
def nr_nets(self):
return sum(x.nr_nets for x in self.sparselayers)
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
weight_interface=5, weight_hidden_size=2, weight_output_size=1
):
@ -216,16 +227,13 @@ class SparseNetwork(nn.Module):
if self.activation:
tensor = self.activation(tensor)
for nl_idx, network_layer in enumerate(self.hidden_layers):
# Sparse Layer pass
# if idx % 2 == 1 and self.residual_skip:
if self.residual_skip:
residual = tensor
tensor = self.sparse_layer_forward(tensor, network_layer)
if self.activation:
tensor = self.activation(tensor)
if nl_idx % 2 == 0 and self.residual_skip:
residual = tensor.clone()
if nl_idx % 2 == 1 and self.residual_skip:
# noinspection PyUnboundLocalVariable
tensor += residual
# if idx % 2 == 0 and self.residual_skip:
if self.residual_skip:
tensor = tensor + residual
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
return tensor
@ -282,7 +290,7 @@ class SparseNetwork(nn.Module):
output = layer(x)
# loss = sum([loss_fn(out, target) for out, target in zip(output, target_data)]) / len(output)
loss = loss_fn(output, target_data) * 85
loss = loss_fn(output, target_data) * layer.nr_nets
losses.append(loss.detach())
loss.backward()
@ -311,39 +319,42 @@ def test_sparse_net():
data_dim = np.prod(dataset[0][0].shape)
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
batchx, batchy = next(iter(d))
metanet(batchx)
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
out = metanet(batchx)
result = sum([torch.allclose(out[i], batchy[i], rtol=0, atol=epsilon_error_margin) for i in range(metanet.nr_nets)])
# print(f"identity_fn after {train_iteration+1} self-train iterations: {result} /{net.nr_nets}")
def test_sparse_net_sef_train():
net = SparseNetwork(5, 5, 6, 10)
epochs = 10000
df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for epoch in trange(epochs):
_ = net.combined_self_train(optimizer)
sparse_metanet = SparseNetwork(15*15, 5, 6, 10).to('cuda')
init_st_store_path = Path('counter.csv')
optimizer = torch.optim.SGD(sparse_metanet.parameters(), lr=0.004, momentum=0.9)
init_st_epochs = 10000
init_st_df = pd.DataFrame(columns=['Epoch', 'Func Type', 'Count'])
if epoch % 500 == 0:
for st_epoch in trange(init_st_epochs):
_ = sparse_metanet.combined_self_train(optimizer)
if st_epoch % 500 == 0:
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {epoch + 1} self-train epochs: {counter}")
tqdm.write(f"identity_fn after {st_epoch} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (epoch, key, value)
net.reset_diverged_particles()
init_st_df.loc[init_st_df.shape[0]] = (st_epoch, key, value)
sparse_metanet.reset_diverged_particles()
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
id_functions = test_for_fixpoints(counter, list(sparse_metanet.particles))
counter = dict(counter)
tqdm.write(f"identity_fn after {epochs} self-train epochs: {counter}")
tqdm.write(f"identity_fn after {init_st_epochs} self-train epochs: {counter}")
for key, value in counter.items():
df.loc[df.shape[0]] = (epoch, key, value)
df.to_csv('counter.csv', mode='w')
import seaborn as sns
import matplotlib.pyplot as plt
c = pd.read_csv('counter.csv', index_col=0)
init_st_df.loc[init_st_df.shape[0]] = (init_st_epochs, key, value)
init_st_df.to_csv(init_st_store_path, mode='w', index=False)
c = pd.read_csv(init_st_store_path)
sns.lineplot(data=c, x='Epoch', y='Count', hue='Func Type')
plt.savefig('counter.png', dpi=300)
plt.savefig(init_st_store_path, dpi=300)
def test_manual_for_loop():
@ -353,7 +364,7 @@ def test_manual_for_loop():
rounds = 1000
for net in tqdm(nets):
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
optimizer = torch.optim.SGD(net.parameters(), lr=0.0001, momentum=0.9)
for i in range(rounds):
optimizer.zero_grad()
input_data = net.input_weight_matrix()