journal linspace basins
This commit is contained in:
@ -5,6 +5,7 @@ import random
|
|||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
from functionalities_test import is_identity_function, test_status
|
from functionalities_test import is_identity_function, test_status
|
||||||
from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance
|
from journal_basins import SpawnExperiment, prng, mean_invariate_manhattan_distance
|
||||||
@ -16,6 +17,7 @@ from sklearn.metrics import mean_squared_error as MSE
|
|||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
class SpawnLinspaceExperiment(SpawnExperiment):
|
class SpawnLinspaceExperiment(SpawnExperiment):
|
||||||
|
|
||||||
def spawn_and_continue(self, number_clones: int = None):
|
def spawn_and_continue(self, number_clones: int = None):
|
||||||
@ -44,11 +46,12 @@ class SpawnLinspaceExperiment(SpawnExperiment):
|
|||||||
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
# To plot clones starting after first epoch (z=ST_steps), set that as start_time!
|
||||||
# To make sure PCA will plot the same trajectory up until this point, we clone the
|
# To make sure PCA will plot the same trajectory up until this point, we clone the
|
||||||
# parent-net's weight history as well.
|
# parent-net's weight history as well.
|
||||||
in_between_weights = np.linspace(net2_target_data, net2_target_data, number_clones)
|
in_between_weights = np.linspace(net1_target_data, net2_target_data, number_clones,endpoint=False)
|
||||||
|
|
||||||
for in_between_weight in in_between_weights:
|
for j, in_between_weight in enumerate(in_between_weights):
|
||||||
clone = Net(net1.input_size, net1.hidden_size, net1.out_size, start_time=self.ST_steps)
|
clone = Net(net1.input_size, net1.hidden_size, net1.out_size,
|
||||||
clone.apply_weights(in_between_weight)
|
name=f"{net1.name}_clone_{str(j)}", start_time=self.ST_steps)
|
||||||
|
clone.apply_weights(torch.as_tensor(in_between_weight))
|
||||||
|
|
||||||
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
|
clone.s_train_weights_history = copy.deepcopy(net1.s_train_weights_history)
|
||||||
clone.number_trained = copy.deepcopy(net1.number_trained)
|
clone.number_trained = copy.deepcopy(net1.number_trained)
|
||||||
@ -73,14 +76,14 @@ class SpawnLinspaceExperiment(SpawnExperiment):
|
|||||||
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
# .. log to data-frame and add to nets for 3d plotting if they are fixpoints themselves.
|
||||||
test_status(clone)
|
test_status(clone)
|
||||||
if is_identity_function(clone):
|
if is_identity_function(clone):
|
||||||
#print(f"Clone {j} (of net_{i}) is fixpoint."
|
print(f"Clone {j} (of net_{net1.name}) is fixpoint."
|
||||||
# f"\nMSE({i},{j}): {MSE_post}"
|
f"\nMSE({net1.name},{j}): {MSE_post}"
|
||||||
# f"\nMAE({i},{j}): {MAE_post}"
|
f"\nMAE({net1.name},{j}): {MAE_post}"
|
||||||
# f"\nMIM({i},{j}): {MIM_post}\n")
|
f"\nMIM({net1.name},{j}): {MIM_post}\n")
|
||||||
self.nets.append(clone)
|
self.nets.append(clone)
|
||||||
|
|
||||||
df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post, self.noise,
|
df.loc[clone.name] = [net1.name, MAE_pre, MAE_post, MSE_pre, MSE_post, MIM_pre, MIM_post,
|
||||||
clone.is_fixpoint]
|
self.noise, clone.is_fixpoint]
|
||||||
|
|
||||||
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
# Finally take parent net {i} and finish it's training for comparison to clone development.
|
||||||
for _ in range(self.epochs - 1):
|
for _ in range(self.epochs - 1):
|
||||||
@ -107,36 +110,32 @@ if __name__ == '__main__':
|
|||||||
ST_log_step_size = 10
|
ST_log_step_size = 10
|
||||||
|
|
||||||
# Define number of networks & their architecture
|
# Define number of networks & their architecture
|
||||||
nr_clones = 5
|
nr_clones = 8
|
||||||
ST_population_size = 2
|
ST_population_size = 3
|
||||||
ST_net_hidden_size = 2
|
ST_net_hidden_size = 2
|
||||||
ST_net_learning_rate = 0.04
|
ST_net_learning_rate = 0.04
|
||||||
ST_name_hash = random.getrandbits(32)
|
ST_name_hash = random.getrandbits(32)
|
||||||
|
|
||||||
print(f"Running the Spawn experiment:")
|
print(f"Running the Spawn experiment:")
|
||||||
exp_list = []
|
df = SpawnLinspaceExperiment(
|
||||||
for noise_factor in range(2, 5):
|
population_size=ST_population_size,
|
||||||
exp = SpawnExperiment(
|
log_step_size=ST_log_step_size,
|
||||||
population_size=ST_population_size,
|
net_input_size=NET_INPUT_SIZE,
|
||||||
log_step_size=ST_log_step_size,
|
net_hidden_size=ST_net_hidden_size,
|
||||||
net_input_size=NET_INPUT_SIZE,
|
net_out_size=NET_OUT_SIZE,
|
||||||
net_hidden_size=ST_net_hidden_size,
|
net_learning_rate=ST_net_learning_rate,
|
||||||
net_out_size=NET_OUT_SIZE,
|
epochs=ST_epochs,
|
||||||
net_learning_rate=ST_net_learning_rate,
|
st_steps=ST_steps,
|
||||||
epochs=ST_epochs,
|
nr_clones=nr_clones,
|
||||||
st_steps=ST_steps,
|
noise=None,
|
||||||
nr_clones=nr_clones,
|
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'linage'
|
||||||
noise=pow(10, -noise_factor),
|
).df
|
||||||
directory=Path('output') / 'spawn_basin' / f'{ST_name_hash}' / f'10e-{noise_factor}'
|
|
||||||
)
|
|
||||||
exp_list.append(exp)
|
|
||||||
|
|
||||||
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
|
# Boxplot with counts of nr_fixpoints, nr_other, nr_etc. on y-axis
|
||||||
df = pd.concat([exp.df for exp in exp_list])
|
|
||||||
sns.countplot(data=df, x="noise", hue="status_post")
|
sns.countplot(data=df, x="noise", hue="status_post")
|
||||||
plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/fixpoint_status_countplot.png")
|
||||||
|
|
||||||
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
|
# Catplot (either kind="point" or "box") that shows before-after training distances to parent
|
||||||
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
|
mlt = df[["MIM_pre", "MIM_post", "noise"]].melt("noise", var_name="time", value_name='Average Distance')
|
||||||
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
|
sns.catplot(data=mlt, x="time", y="Average Distance", col="noise", kind="point", col_wrap=5, sharey=False)
|
||||||
plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
|
plt.savefig(f"output/spawn_basin/{ST_name_hash}/clone_distance_catplot.png")
|
||||||
|
@ -124,7 +124,6 @@ class SpawnExperiment:
|
|||||||
# self.visualize_loss()
|
# self.visualize_loss()
|
||||||
self.distance_matrix = distance_matrix(self.nets, print_it=False)
|
self.distance_matrix = distance_matrix(self.nets, print_it=False)
|
||||||
self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
|
self.parent_clone_distances = distance_from_parent(self.nets, print_it=False)
|
||||||
|
|
||||||
self.save()
|
self.save()
|
||||||
|
|
||||||
def populate_environment(self):
|
def populate_environment(self):
|
||||||
@ -243,7 +242,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# Define number of networks & their architecture
|
# Define number of networks & their architecture
|
||||||
nr_clones = 5
|
nr_clones = 5
|
||||||
ST_population_size = 1
|
ST_population_size = 2
|
||||||
ST_net_hidden_size = 2
|
ST_net_hidden_size = 2
|
||||||
ST_net_learning_rate = 0.04
|
ST_net_learning_rate = 0.04
|
||||||
ST_name_hash = random.getrandbits(32)
|
ST_name_hash = random.getrandbits(32)
|
||||||
|
@ -216,7 +216,8 @@ def plot_3d_soup(nets_list, exp_name, directory: Union[str, Path]):
|
|||||||
# will send forward the number "1" for batch size with the variable <irrelevant_batch_size>.
|
# will send forward the number "1" for batch size with the variable <irrelevant_batch_size>.
|
||||||
irrelevant_batch_size = 1
|
irrelevant_batch_size = 1
|
||||||
|
|
||||||
plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False)
|
# plot_3d_self_train(nets_list, exp_name, directory, irrelevant_batch_size, False)
|
||||||
|
plot_3d_self_train(nets_list, exp_name, directory, 10, True)
|
||||||
|
|
||||||
|
|
||||||
def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int,
|
def line_chart_fixpoints(fixpoint_counters_history: list, epochs: int, ST_steps_between_SA: int,
|
||||||
|
Reference in New Issue
Block a user