Compare commits
10 Commits
Author | SHA1 | Date | |
---|---|---|---|
ec67c9092f | |||
5706b62c67 | |||
5194816044 | |||
de85f45e6b | |||
9bbe5df2b2 | |||
320c5c26bc | |||
a12577465c | |||
93bbda54a1 | |||
4b7999479f | |||
5dfbfcaa20 |
@ -2,13 +2,17 @@ import os
|
||||
import time
|
||||
import dill
|
||||
from tqdm import tqdm
|
||||
import copy
|
||||
from copy import copy
|
||||
|
||||
from tensorflow.python.keras import backend as K
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class IllegalArgumentError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class Experiment(ABC):
|
||||
|
||||
@staticmethod
|
||||
@ -20,15 +24,24 @@ class Experiment(ABC):
|
||||
def reset_model():
|
||||
K.clear_session()
|
||||
|
||||
def __init__(self, name=None, ident=None):
|
||||
def __init__(self, name=None, ident=None, **kwargs):
|
||||
self.experiment_id = f'{ident or ""}_{time.time()}'
|
||||
self.experiment_name = name or 'unnamed_experiment'
|
||||
self.next_iteration = 0
|
||||
self.iteration = 0
|
||||
self.log_messages = list()
|
||||
self.historical_particles = dict()
|
||||
self.params = dict(exp_iterations=100, application_steps=100, prints=True, trains_per_application=100)
|
||||
self.with_params(**kwargs)
|
||||
|
||||
def __copy__(self, *args, **kwargs):
|
||||
params = self.params
|
||||
params.update(name=self.experiment_name)
|
||||
params.update(**kwargs)
|
||||
self_copy = self.__class__(*args, **params)
|
||||
return self_copy
|
||||
|
||||
def __enter__(self):
|
||||
self.dir = os.path.join('experiments', f'exp-{self.experiment_name}-{self.experiment_id}-{self.next_iteration}')
|
||||
self.dir = os.path.join('experiments', f'exp-{self.experiment_name}-{self.experiment_id}-{self.iteration}')
|
||||
os.makedirs(self.dir)
|
||||
print(f'** created {self.dir} **')
|
||||
return self
|
||||
@ -36,7 +49,14 @@ class Experiment(ABC):
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
self.save(experiment=self.without_particles())
|
||||
self.save_log()
|
||||
self.next_iteration += 1
|
||||
# Clean Exit
|
||||
self.reset_all()
|
||||
# self.iteration += 1 Taken From here!
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
# Make them your own
|
||||
self.params.update(kwargs)
|
||||
return self
|
||||
|
||||
def log(self, message, **kwargs):
|
||||
self.log_messages.append(message)
|
||||
@ -47,16 +67,15 @@ class Experiment(ABC):
|
||||
for log_message in self.log_messages:
|
||||
print(str(log_message), file=log_file)
|
||||
|
||||
def __copy__(self):
|
||||
self_copy = self.__class__(name=self.experiment_name,)
|
||||
self_copy.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
|
||||
attr not in ['particles', 'historical_particles']}
|
||||
return self_copy
|
||||
|
||||
def without_particles(self):
|
||||
self_copy = copy.copy(self)
|
||||
# self_copy.particles = [particle.states for particle in self.particles]
|
||||
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
|
||||
self_copy = copy(self)
|
||||
# Check if attribute exists
|
||||
if hasattr(self, 'historical_particles'):
|
||||
# Check if it is empty.
|
||||
if self.historical_particles:
|
||||
# Do the Update
|
||||
# self_copy.particles = [particle.states for particle in self.particles]
|
||||
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
|
||||
return self_copy
|
||||
|
||||
def save(self, **kwargs):
|
||||
@ -64,28 +83,32 @@ class Experiment(ABC):
|
||||
with open(os.path.join(self.dir, f"{name}.dill"), "wb") as dill_file:
|
||||
dill.dump(value, dill_file)
|
||||
|
||||
def reset_log(self):
|
||||
self.log_messages = list()
|
||||
|
||||
@abstractmethod
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
def run_net(self, net, **kwargs):
|
||||
raise NotImplementedError
|
||||
pass
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, prints=False, **kwargs):
|
||||
def run_exp(self, network_generator, reset_model=False, **kwargs):
|
||||
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
|
||||
for run_id in range(exp_iterations):
|
||||
for run_id in range(self.params.get('exp_iterations')):
|
||||
network = network_generator()
|
||||
self.run_net(network, 100, run_id=run_id + 1, **kwargs)
|
||||
self.run_net(network, **kwargs)
|
||||
self.historical_particles[run_id] = network
|
||||
if prints:
|
||||
if self.params.get('prints'):
|
||||
print("Fixpoint? " + str(network.is_fixpoint()))
|
||||
self.reset_model()
|
||||
self.iteration += 1
|
||||
if reset_model:
|
||||
self.reset_model()
|
||||
|
||||
def reset_all(self):
|
||||
self.reset_log()
|
||||
self.reset_model()
|
||||
|
||||
|
||||
class FixpointExperiment(Experiment):
|
||||
if kwargs.get('logging', False):
|
||||
self.log(self.counters)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
@ -93,12 +116,22 @@ class FixpointExperiment(Experiment):
|
||||
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
self.interesting_fixpoints = []
|
||||
|
||||
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
|
||||
i = 0
|
||||
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
|
||||
net.self_attack()
|
||||
i += 1
|
||||
if run_id:
|
||||
def run_exp(self, network_generator, logging=True, reset_model=False, **kwargs):
|
||||
kwargs.update(reset_model=False)
|
||||
super(FixpointExperiment, self).run_exp(network_generator, **kwargs)
|
||||
if logging:
|
||||
self.log(self.counters)
|
||||
if reset_model:
|
||||
self.reset_model()
|
||||
|
||||
def run_net(self, net, **kwargs):
|
||||
if len(kwargs):
|
||||
raise IllegalArgumentError
|
||||
for i in range(self.params.get('application_steps')):
|
||||
if net.is_diverged() or net.is_fixpoint():
|
||||
break
|
||||
net.set_weights(net.apply_to_weights(net.get_weights()))
|
||||
if self.iteration and hasattr(self, 'save_state'):
|
||||
net.save_state(time=i)
|
||||
self.count(net)
|
||||
|
||||
@ -128,44 +161,117 @@ class FixpointExperiment(Experiment):
|
||||
|
||||
class MixedFixpointExperiment(FixpointExperiment):
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
for i in range(step_limit):
|
||||
def __init__(self, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(MixedFixpointExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_net(self, net, **kwargs):
|
||||
assert hasattr(net, 'train'), 'This Network must be trainable, i.e. use the "TrainingNeuralNetworkDecorator"!'
|
||||
|
||||
for application in range(self.params.get('application_steps')):
|
||||
epoch_num = self.params.get('trains_per_application') * application
|
||||
net.set_weights(net.apply_to_weights(net.get_weights()))
|
||||
if net.is_diverged() or net.is_fixpoint():
|
||||
break
|
||||
net.self_attack()
|
||||
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
|
||||
for _ in range(trains_per_application):
|
||||
loss = net.compiled().train()
|
||||
bar.postfix[1]["value"] = loss
|
||||
barformat = "Experiment Iteration: {postfix[iteration]} | "
|
||||
barformat += "Evolution Step:{postfix[step]}| "
|
||||
barformat += "Training Epoch:{postfix[epoch]}| "
|
||||
barformat += "Loss: {postfix[loss]} | {bar}"
|
||||
with tqdm(total=self.params.get('trains_per_application'),
|
||||
postfix={'step': 0, 'loss': 0, 'iteration': self.iteration, 'epoch': 0, None: None},
|
||||
bar_format=barformat) as bar:
|
||||
# This iterates for self.trains_per_application times, the addition is just for epoch enumeration
|
||||
for epoch in range(epoch_num, epoch_num + self.params.get('trains_per_application')):
|
||||
if net.is_diverged():
|
||||
print('Network diverged to either inf or nan... breaking')
|
||||
break
|
||||
loss = net.train(epoch=epoch)
|
||||
if epoch % 10 == 0:
|
||||
bar.postfix.update(step=application, epoch=epoch, loss=loss, iteration=self.iteration)
|
||||
bar.update()
|
||||
if run_id:
|
||||
epoch_num += 1
|
||||
if self.iteration and hasattr(net, 'save_sate'):
|
||||
net.save_state()
|
||||
self.count(net)
|
||||
|
||||
|
||||
class SoupExperiment(Experiment):
|
||||
class TaskExperiment(MixedFixpointExperiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(SoupExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(TaskExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, soup_generator=None, soup_iterations=0, prints=False):
|
||||
for i in range(soup_iterations):
|
||||
soup = soup_generator()
|
||||
def run_exp(self, network_generator, reset_model=False, logging=True, **kwargs):
|
||||
kwargs.update(reset_model=False, logging=logging)
|
||||
super(FixpointExperiment, self).run_exp(network_generator, **kwargs)
|
||||
if reset_model:
|
||||
self.reset_model()
|
||||
pass
|
||||
|
||||
def run_net(self, net, **kwargs):
|
||||
assert hasattr(net, 'evaluate')
|
||||
super(TaskExperiment, self).run_net(net, **kwargs)
|
||||
|
||||
# Get Performance without Training
|
||||
task_performance = net.evaluate(*net.get_samples(task_samples=True),
|
||||
batchsize=net.get_amount_of_weights())
|
||||
self_performance = net.evaluate(*net.get_samples(self_samples=True),
|
||||
batchsize=net.get_amount_of_weights())
|
||||
|
||||
current_performance = dict(task_performance=task_performance,
|
||||
self_performance=self_performance,
|
||||
counters=self.counters, id=self.iteration)
|
||||
|
||||
self.log(current_performance)
|
||||
pass
|
||||
|
||||
|
||||
class SoupExperiment(Experiment):
|
||||
|
||||
def __init__(self, soup_generator, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
self.soup_generator = soup_generator
|
||||
super(SoupExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_exp(self, network_generator, **kwargs):
|
||||
for i in range(self.params.get('exp_iterations')):
|
||||
soup = self.soup_generator()
|
||||
soup.seed()
|
||||
for _ in tqdm(exp_iterations):
|
||||
for _ in tqdm(range(self.params.get('application_steps'))):
|
||||
soup.evolve()
|
||||
self.log(soup.count())
|
||||
self.save(soup=soup.without_particles())
|
||||
K.clear_session()
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
def run_net(self, net, **kwargs):
|
||||
raise NotImplementedError
|
||||
pass
|
||||
|
||||
|
||||
class IdentLearningExperiment(Experiment):
|
||||
class TaskingSoupExperiment(Experiment):
|
||||
|
||||
def __init__(self):
|
||||
super(IdentLearningExperiment, self).__init__(name=self.__class__.__name__)
|
||||
def __init__(self, soup_generator, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(TaskingSoupExperiment, self).__init__(**kwargs)
|
||||
self.soup_generator = soup_generator
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
def __copy__(self):
|
||||
super(TaskingSoupExperiment, self).__copy__(self.soup_generator)
|
||||
|
||||
def run_exp(self, **kwargs):
|
||||
for i in range(self.params.get('exp_iterations')):
|
||||
soup = self.soup_generator()
|
||||
soup.seed()
|
||||
for _ in tqdm(range(self.params.get('application_steps'))):
|
||||
soup.evolve()
|
||||
self.log(soup.count())
|
||||
self.save(soup=soup.without_particles())
|
||||
K.clear_session()
|
||||
|
||||
def run_net(self, net, **kwargs):
|
||||
raise NotImplementedError()
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
498
code/network.py
498
code/network.py
@ -1,14 +1,26 @@
|
||||
# Librarys
|
||||
import numpy as np
|
||||
from abc import abstractmethod, ABC
|
||||
from typing import List, Union
|
||||
from typing import List, Tuple
|
||||
from types import FunctionType
|
||||
import warnings
|
||||
|
||||
import os
|
||||
|
||||
# Functions and Operators
|
||||
from operator import mul
|
||||
from functools import reduce
|
||||
from itertools import accumulate
|
||||
from copy import deepcopy
|
||||
|
||||
# Deep learning Framework
|
||||
from tensorflow.python.keras.models import Sequential
|
||||
from tensorflow.python.keras.callbacks import Callback
|
||||
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
||||
from tensorflow.python.keras import backend as K
|
||||
|
||||
from experiment import *
|
||||
# Experiment Class
|
||||
from task import TaskAdditionOfN
|
||||
from experiment import TaskExperiment
|
||||
|
||||
# Supress warnings and info messages
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
@ -28,104 +40,23 @@ class SaveStateCallback(Callback):
|
||||
return
|
||||
|
||||
|
||||
class Weights:
|
||||
class EarlyStoppingByInfNanLoss(Callback):
|
||||
def __init__(self, monitor='loss', verbose=0):
|
||||
super(Callback, self).__init__()
|
||||
self.monitor = monitor
|
||||
self.verbose = verbose
|
||||
|
||||
@staticmethod
|
||||
def __reshape_flat_array__(array, shapes):
|
||||
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(np.cumsum([0]+sizes), np.cumsum([0]+sizes)[1:])]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
def on_epoch_end(self, epoch, logs: dict = None):
|
||||
logs = logs or dict()
|
||||
current = logs.get(self.monitor)
|
||||
if current is None:
|
||||
warnings.warn(f'Early stopping requires {self.monitor} available!', RuntimeWarning)
|
||||
pass
|
||||
|
||||
def __init__(self, weight_vector: Union[List[np.ndarray], np.ndarray], flat_array_shape=None):
|
||||
"""
|
||||
Weight class, for easy manipulation of weight vectors from Keras models
|
||||
|
||||
:param weight_vector: A numpy array holding weights
|
||||
:type weight_vector: List[np.ndarray]
|
||||
"""
|
||||
self.__iter_idx = [0, 0]
|
||||
if flat_array_shape:
|
||||
weight_vector = self.__reshape_flat_array__(weight_vector, flat_array_shape)
|
||||
|
||||
self.layers = weight_vector
|
||||
|
||||
# TODO: implement a way to access the cells directly
|
||||
# self.cells = len(self)
|
||||
# TODO: implement a way to access the weights directly
|
||||
# self.weights = self.to_flat_array() ?
|
||||
|
||||
def __iter__(self):
|
||||
self.__iter_idx = [0, 0]
|
||||
return self
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.layers[item]
|
||||
|
||||
def max(self):
|
||||
np.max(self.layers)
|
||||
|
||||
def avg(self):
|
||||
return np.average(self.layers)
|
||||
|
||||
def __len__(self):
|
||||
return sum([x.size for x in self.layers])
|
||||
|
||||
def shapes(self):
|
||||
return [x.shape for x in self.layers]
|
||||
|
||||
def num_layers(self):
|
||||
return len(self.layers)
|
||||
|
||||
def __copy__(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def __next__(self):
|
||||
# ToDo: Check iteration progress over layers
|
||||
# ToDo: There is still a problem interation, currently only cell level is the last loop stage.
|
||||
# Do we need this?
|
||||
if self.__iter_idx[0] >= len(self.layers):
|
||||
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
|
||||
raise StopIteration
|
||||
result = self.layers[self.__iter_idx[0]][self.__iter_idx[1]]
|
||||
|
||||
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
|
||||
self.__iter_idx[0] += 1
|
||||
self.__iter_idx[1] = 0
|
||||
else:
|
||||
self.__iter_idx[1] += 1
|
||||
return result
|
||||
|
||||
def __repr__(self):
|
||||
return f'Weights({self.to_flat_array().tolist()})'
|
||||
|
||||
def to_flat_array(self) -> np.ndarray:
|
||||
return np.hstack([weight.flatten() for weight in self.layers])
|
||||
|
||||
def from_flat_array(self, array):
|
||||
new_weights = self.__reshape_flat_array__(array, self.shapes())
|
||||
return new_weights
|
||||
|
||||
def shuffle(self):
|
||||
flat = self.to_flat_array()
|
||||
np.random.shuffle(flat)
|
||||
self.from_flat_array(flat)
|
||||
return True
|
||||
|
||||
def are_diverged(self):
|
||||
return any([np.isnan(x).any() for x in self.layers]) or any([np.isinf(x).any() for x in self.layers])
|
||||
|
||||
def are_within_bounds(self, lower_bound: float, upper_bound: float):
|
||||
return bool(sum([((lower_bound < x) & (x > upper_bound)).size for x in self.layers]))
|
||||
|
||||
def aggregate_by(self, func: FunctionType, num_aggregates):
|
||||
collection_sizes = len(self) // num_aggregates
|
||||
weights = self.to_flat_array()[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
aggregated_weights = func(weights, num_aggregates)
|
||||
left_overs = self.to_flat_array()[collection_sizes * num_aggregates:]
|
||||
return aggregated_weights, left_overs
|
||||
if np.isnan(current) or np.isinf(current):
|
||||
if self.verbose > 0:
|
||||
print(f'Epoch {epoch}: early stopping THR')
|
||||
self.model.stop_training = True
|
||||
|
||||
|
||||
class NeuralNetwork(ABC):
|
||||
@ -133,10 +64,50 @@ class NeuralNetwork(ABC):
|
||||
This is the Base Network Class, including abstract functions that must be implemented.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def are_weights_diverged(weights: List[np.ndarray]) -> bool:
|
||||
return any([any((np.isnan(x).any(), np.isinf(x).any())) for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def are_weights_within_bounds(weights: List[np.ndarray], lower_bound: float, upper_bound: float) -> bool:
|
||||
return any([((lower_bound < x) & (x < upper_bound)).any() for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def get_weight_amount(weights: List[np.ndarray]):
|
||||
return sum([x.size for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def shapes(weights: List[np.ndarray]):
|
||||
return [x.shape for x in weights]
|
||||
|
||||
@staticmethod
|
||||
def num_layers(weights: List[np.ndarray]):
|
||||
return len(weights)
|
||||
|
||||
def repr(self, weights: List[np.ndarray]):
|
||||
return f'Weights({self.weights_to_flat_array(weights).tolist()})'
|
||||
|
||||
@staticmethod
|
||||
def weights_to_flat_array(weights: List[np.ndarray]) -> np.ndarray:
|
||||
return np.concatenate([d.ravel() for d in weights])
|
||||
|
||||
@staticmethod
|
||||
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
|
||||
# Same thing, but with an additional np call
|
||||
# sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
|
||||
sizes = [reduce(mul, shape) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
|
||||
def __init__(self, **params):
|
||||
super().__init__()
|
||||
self.params = dict(epsilon=0.00000000000001)
|
||||
self.params = dict(epsilon=0.00000000000001, early_nan_stopping=True, store_states=False)
|
||||
self.params.update(params)
|
||||
self.name = params.get('name', self.__class__.__name__)
|
||||
self.keras_params = dict(activation='linear', use_bias=False)
|
||||
self.states = []
|
||||
self.model: Sequential
|
||||
@ -155,76 +126,89 @@ class NeuralNetwork(ABC):
|
||||
self.keras_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def get_weights(self) -> Weights:
|
||||
return Weights(self.model.get_weights())
|
||||
def print_weights(self, weights=None):
|
||||
print(self.repr(weights or self.get_weights()))
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
return self.get_weight_amount(self.get_weights())
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def get_weights(self) -> List[np.ndarray]:
|
||||
return self.get_model().get_weights()
|
||||
|
||||
def get_weights_flat(self) -> np.ndarray:
|
||||
return self.get_weights().to_flat_array()
|
||||
return self.weights_to_flat_array(self.get_weights())
|
||||
|
||||
def set_weights(self, new_weights: Weights):
|
||||
return self.model.set_weights(new_weights.layers)
|
||||
def reshape_flat_array_like(self, array, weights: List[np.ndarray]) -> List[np.ndarray]:
|
||||
return self.reshape_flat_array(array, self.shapes(weights))
|
||||
|
||||
@abstractmethod
|
||||
def get_samples(self):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
||||
raise NotImplementedError
|
||||
def set_weights(self, new_weights: List[np.ndarray]):
|
||||
return self.model.set_weights(new_weights)
|
||||
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> Weights:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_to_network(self, other_network) -> Weights:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
def apply_to_network(self, other_network) -> List[np.ndarray]:
|
||||
"""
|
||||
Take a networks weights and apply _this_ networks function.
|
||||
:param other_network:
|
||||
:return:
|
||||
"""
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
return new_weights
|
||||
|
||||
def attack(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is an attack?
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def fuck(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is fucking?
|
||||
self.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations=1):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is self attack?
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
def meet(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is meeting?
|
||||
new_other_network = copy.deepcopy(other_network)
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def is_diverged(self):
|
||||
return self.get_weights().are_diverged()
|
||||
return self.are_weights_diverged(self.get_weights())
|
||||
|
||||
def is_zero(self, epsilon=None):
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
return self.get_weights().are_within_bounds(-epsilon, epsilon)
|
||||
return self.are_weights_within_bounds(self.get_weights(), -epsilon, epsilon)
|
||||
|
||||
def is_fixpoint(self, degree: int = 1, epsilon: float = None) -> bool:
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
new_weights = deepcopy(self.get_weights())
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if new_weights.are_diverged():
|
||||
if self.are_weights_diverged(new_weights):
|
||||
return False
|
||||
|
||||
biggerEpsilon = (np.abs(new_weights.to_flat_array() - self.get_weights().to_flat_array()) >= epsilon).any()
|
||||
flat_new = self.weights_to_flat_array(new_weights)
|
||||
flat_old = self.weights_to_flat_array(self.get_weights())
|
||||
biggerEpsilon = (np.abs(flat_new - flat_old) >= epsilon).any()
|
||||
|
||||
# Boolean Value needs to be flipped to answer "is_fixpoint"
|
||||
return not biggerEpsilon
|
||||
|
||||
def print_weights(self, weights=None):
|
||||
print(weights or self.get_weights())
|
||||
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
|
||||
collection_sizes = self.get_weight_amount(weights) // num_aggregates
|
||||
flat = self.weights_to_flat_array(weights)
|
||||
array_for_aggregation = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
left_overs = flat[collection_sizes * num_aggregates:]
|
||||
aggregated_weights = func(array_for_aggregation, num_aggregates)
|
||||
return aggregated_weights, left_overs
|
||||
|
||||
def shuffle_weights(self, weights: List[np.ndarray]):
|
||||
flat = self.weights_to_flat_array(weights)
|
||||
np.random.shuffle(flat)
|
||||
return self.reshape_flat_array_like(flat, weights)
|
||||
|
||||
@abstractmethod
|
||||
def get_samples(self, **kwargs):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
"""
|
||||
Take weights as inputs; retunr the evaluation of _this_ network.
|
||||
"Apply this function".
|
||||
|
||||
:param old_weights:
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ParticleDecorator:
|
||||
@ -273,6 +257,63 @@ class ParticleDecorator:
|
||||
def get_states(self):
|
||||
return self.states
|
||||
|
||||
def attack(self, other_network, iterations: int = 1):
|
||||
"""
|
||||
Set a networks weights based on the output of the application of my function to its weights.
|
||||
"Alter a networks weights based on my evaluation"
|
||||
:param other_network:
|
||||
:param iterations:
|
||||
:return:
|
||||
"""
|
||||
for _ in range(iterations):
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations: int = 1):
|
||||
"""
|
||||
Set my weights based on the output of the application of my function to its weights.
|
||||
"Alter my network weights based on my evaluation"
|
||||
:param iterations:
|
||||
:return:
|
||||
"""
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
|
||||
class TaskDecorator(TaskAdditionOfN):
|
||||
|
||||
def __init__(self, network, **kwargs):
|
||||
super(TaskDecorator, self).__init__(**kwargs)
|
||||
self.network = network
|
||||
self.batchsize = self.network.get_amount_of_weights()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.network, name)
|
||||
|
||||
def get_samples(self, task_samples=False, self_samples=False, **kwargs):
|
||||
# XOR, cannot be true at the same time
|
||||
assert not all([task_samples, self_samples])
|
||||
|
||||
if task_samples:
|
||||
return super(TaskDecorator, self).get_samples()
|
||||
|
||||
elif self_samples:
|
||||
return self.network.get_samples()
|
||||
|
||||
else:
|
||||
self_x, self_y = self.network.get_samples()
|
||||
# Super class = Task
|
||||
task_x, task_y = super(TaskDecorator, self).get_samples()
|
||||
|
||||
amount_of_weights = self.network.get_amount_of_weights()
|
||||
random_idx = np.random.choice(np.arange(amount_of_weights), amount_of_weights//2)
|
||||
|
||||
x = self_x[random_idx] = task_x[random_idx]
|
||||
y = self_y[random_idx] = task_y[random_idx]
|
||||
|
||||
return x, y
|
||||
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@ -291,23 +332,23 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
# TODO: Write about it... What does it do?
|
||||
return self.model.predict(inputs)
|
||||
|
||||
def get_samples(self):
|
||||
weights = self.get_weights()
|
||||
def get_samples(self, **kwargs: List[np.ndarray]):
|
||||
weights = kwargs.get('weights', self.get_weights())
|
||||
sample = np.asarray([
|
||||
[weight, idx, *x] for idx, layer in enumerate(weights.layers) for x, weight in np.ndenumerate(layer)
|
||||
[weight, idx, *x] for idx, layer in enumerate(weights) for x, weight in np.ndenumerate(layer)
|
||||
])
|
||||
# normalize [layer, cell, position]
|
||||
for idx in range(1, sample.shape[1]):
|
||||
sample[:, idx] = sample[:, idx] / np.max(sample[:, idx])
|
||||
return sample, sample
|
||||
return sample, sample[:, 0]
|
||||
|
||||
def apply_to_weights(self, weights) -> Weights:
|
||||
def apply_to_weights(self, weights) -> List[np.ndarray]:
|
||||
# ToDo: Insert DocString
|
||||
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
|
||||
transformed_weights = self.get_samples()[0]
|
||||
new_weights = self.apply(transformed_weights)
|
||||
transformed_weights, _ = self.get_samples(weights=weights)
|
||||
new_flat_weights = self.apply(transformed_weights)
|
||||
# use the original weight shape to transform the new tensor
|
||||
return Weights(new_weights, flat_array_shape=weights.shapes())
|
||||
return self.reshape_flat_array_like(new_flat_weights, weights)
|
||||
|
||||
|
||||
class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
@ -329,11 +370,10 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def deaggregate_identically(aggregate, amount):
|
||||
# ToDo: Find a better way than using the a hardcoded [0]
|
||||
return np.hstack([aggregate for _ in range(amount)])[0]
|
||||
return np.repeat(aggregate, amount, axis=0)
|
||||
|
||||
@staticmethod
|
||||
def shuffle_not(weights: Weights):
|
||||
def shuffle_not(weights: List[np.ndarray]):
|
||||
"""
|
||||
Doesn't do a thing. f(x)
|
||||
|
||||
@ -344,9 +384,8 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
"""
|
||||
return weights
|
||||
|
||||
@staticmethod
|
||||
def shuffle_random(weights: Weights):
|
||||
assert weights.shuffle()
|
||||
def shuffle_random(self, weights: List[np.ndarray]):
|
||||
weights = self.shuffle_weights(weights)
|
||||
return weights
|
||||
|
||||
def __init__(self, aggregates, width, depth, **kwargs):
|
||||
@ -369,17 +408,14 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
def get_shuffler(self):
|
||||
return self.params.get('shuffler', self.shuffle_not)
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
return len(self.get_weights())
|
||||
|
||||
def apply(self, inputs):
|
||||
# You need to add an dimension here... "..." copies array values
|
||||
return self.model.predict(inputs[None, ...])
|
||||
|
||||
def get_aggregated_weights(self):
|
||||
return self.get_weights().aggregate_by(self.get_aggregator(), self.aggregates)
|
||||
return self.aggregate_weights_by(self.get_weights(), self.get_aggregator(), self.aggregates)
|
||||
|
||||
def apply_to_weights(self, old_weights) -> Weights:
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
|
||||
# build aggregations of old_weights
|
||||
old_aggregations, leftovers = self.get_aggregated_weights()
|
||||
@ -390,14 +426,14 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_aggregations = self.deaggregate_identically(new_aggregations, collection_sizes)
|
||||
# generate new weights
|
||||
# only include leftovers if there are some then coonvert them to Weight on base of th old shape
|
||||
new_weights = Weights(new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers)),
|
||||
flat_array_shape=old_weights.shapes())
|
||||
complete_weights = new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers))
|
||||
new_weights = self.reshape_flat_array_like(complete_weights, old_weights)
|
||||
|
||||
# maybe shuffle
|
||||
new_weights = self.get_shuffler()(new_weights)
|
||||
return new_weights
|
||||
|
||||
def get_samples(self):
|
||||
def get_samples(self, **kwargs):
|
||||
aggregations, _ = self.get_aggregated_weights()
|
||||
# What did that do?
|
||||
# sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
||||
@ -408,11 +444,11 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
|
||||
old_aggregations, _ = self.get_aggregated_weights()
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
new_weights = deepcopy(self.get_weights())
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if new_weights.are_diverged():
|
||||
if self.are_weights_diverged(new_weights):
|
||||
return False
|
||||
|
||||
new_aggregations, leftovers = self.get_aggregated_weights()
|
||||
@ -427,7 +463,8 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
raise NotImplementedError
|
||||
super(RecurrentNeuralNetwork, self).__init__()
|
||||
self.features = 1
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
@ -443,7 +480,7 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
# build list from old weights
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
new_weights = deepcopy(old_weights)
|
||||
old_weights_list = []
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
@ -500,7 +537,7 @@ class TrainingNeuralNetworkDecorator:
|
||||
return self
|
||||
|
||||
def compile_model(self, **kwargs):
|
||||
compile_params = copy.deepcopy(self.compile_params)
|
||||
compile_params = deepcopy(self.compile_params)
|
||||
compile_params.update(kwargs)
|
||||
return self.network.model.compile(**compile_params)
|
||||
|
||||
@ -510,13 +547,30 @@ class TrainingNeuralNetworkDecorator:
|
||||
self.model_compiled = True
|
||||
return self
|
||||
|
||||
def train(self, batchsize=1, store_states=True, epoch=0):
|
||||
def train(self, batchsize=1, epoch=0):
|
||||
self.compiled()
|
||||
x, y = self.network.get_samples()
|
||||
savestatecallback = [SaveStateCallback(network=self, epoch=epoch)] if store_states else None
|
||||
history = self.network.model.fit(x=x, y=y, epochs=epoch+1, verbose=0,
|
||||
batch_size=batchsize, callbacks=savestatecallback,
|
||||
initial_epoch=epoch)
|
||||
callbacks = []
|
||||
if self.get_params().get('store_states'):
|
||||
callbacks.append(SaveStateCallback(network=self, epoch=epoch))
|
||||
if self.get_params().get('early_nan_stopping'):
|
||||
callbacks.append(EarlyStoppingByInfNanLoss())
|
||||
|
||||
# 'or' does not work on empty lists
|
||||
callbacks = callbacks if callbacks else None
|
||||
"""
|
||||
Please Note:
|
||||
|
||||
epochs: Integer. Number of epochs to train the model.
|
||||
An epoch is an iteration over the entire `x` and `y`
|
||||
data provided.
|
||||
Note that in conjunction with `initial_epoch`,
|
||||
`epochs` is to be understood as "final epoch".
|
||||
The model is not trained for a number of iterations
|
||||
given by `epochs`, but merely until the epoch
|
||||
of index `epochs` is reached."""
|
||||
history = self.network.model.fit(x=x, y=y, initial_epoch=epoch, epochs=epoch+1, verbose=0,
|
||||
batch_size=batchsize, callbacks=callbacks)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def learn_from(self, other_network, batchsize=1):
|
||||
@ -524,68 +578,81 @@ class TrainingNeuralNetworkDecorator:
|
||||
other_network.compiled()
|
||||
x, y = other_network.network.get_samples()
|
||||
history = self.network.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def evaluate(self, x=None, y=None, batchsize=1):
|
||||
self.compiled()
|
||||
x, y = x, y if x is not None and y is not None else self.network.get_samples()
|
||||
"""
|
||||
Please Note:
|
||||
|
||||
epochs: Integer. Number of epochs to train the model.
|
||||
An epoch is an iteration over the entire `x` and `y`
|
||||
data provided.
|
||||
Note that in conjunction with `initial_epoch`,
|
||||
`epochs` is to be understood as "final epoch".
|
||||
The model is not trained for a number of iterations
|
||||
given by `epochs`, but merely until the epoch
|
||||
of index `epochs` is reached."""
|
||||
loss = self.network.model.evaluate(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if True:
|
||||
# WeightWise Neural Network
|
||||
net_generator = ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='linear'))
|
||||
with FixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10, logging=True)
|
||||
exp.reset_all()
|
||||
with TaskExperiment().with_params(application_steps=10, trains_per_application=1000, exp_iterations=30) as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(TaskDecorator(
|
||||
WeightwiseNeuralNetwork(width=2, depth=2))
|
||||
).with_keras_params(activation='linear')
|
||||
exp.run_exp(net_generator, reset_model=True)
|
||||
|
||||
if False:
|
||||
# Aggregating Neural Network
|
||||
net_generator = ParticleDecorator(AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params())
|
||||
with FixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10, logging=True)
|
||||
|
||||
net_generator = lambda: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
|
||||
with MixedFixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10)
|
||||
exp.reset_all()
|
||||
|
||||
if False:
|
||||
# FFT Aggregation
|
||||
net_generator = lambda: ParticleDecorator(
|
||||
AggregatingNeuralNetwork(
|
||||
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft
|
||||
).with_keras_params(activation='linear'))
|
||||
net_generator = lambda: AggregatingNeuralNetwork(
|
||||
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft)
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(10)):
|
||||
exp.run_exp(net_generator, 1)
|
||||
exp.log(exp.counters)
|
||||
exp.reset_model()
|
||||
exp.run_exp(net_generator, 10)
|
||||
exp.log(exp.counters)
|
||||
exp.reset_model()
|
||||
exp.reset_all()
|
||||
|
||||
if True:
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
run_count = 10000
|
||||
net_generator = TrainingNeuralNetworkDecorator(
|
||||
ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2))
|
||||
).with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
||||
run_count = 1000
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(
|
||||
width=2, depth=2).with_params(epsilon=0.0001)).with_keras_params(optimizer='sgd')
|
||||
with MixedFixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
exp.run_exp(net_generator, 1)
|
||||
if run_id % 100 == 0:
|
||||
exp.run_net(net_generator, 1)
|
||||
exp.run_exp(net_generator, 1)
|
||||
K.clear_session()
|
||||
|
||||
if False:
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 1000
|
||||
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
|
||||
run_count = 100
|
||||
net = TrainingNeuralNetworkDecorator(
|
||||
AggregatingNeuralNetwork(4, width=2, depth=2).with_params(epsilon=0.1e-6))
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
current_loss = net.compiled().train()
|
||||
if run_id % 100 == 0:
|
||||
net.print_weights()
|
||||
old_aggs, _ = net.net.get_aggregated_weights()
|
||||
old_aggs, _ = net.get_aggregated_weights()
|
||||
print("old weights agg: " + str(old_aggs))
|
||||
fp, new_aggs = net.net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
||||
fp, new_aggs = net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
||||
print("new weights agg: " + str(new_aggs))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Fixpoint after Agg? " + str(fp))
|
||||
print("Loss " + str(loss))
|
||||
print("Loss " + str(current_loss))
|
||||
print()
|
||||
|
||||
if False:
|
||||
@ -593,26 +660,13 @@ if __name__ == '__main__':
|
||||
# TODO: Wtf is happening here?
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 10000
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2))\
|
||||
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)
|
||||
).with_keras_params(optimizer='sgd', activation='linear')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
current_loss = net.compiled().train()
|
||||
if run_id % 500 == 0:
|
||||
net.print_weights()
|
||||
# print(net.apply_to_network(net))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Loss " + str(loss))
|
||||
print("Loss " + str(current_loss))
|
||||
print()
|
||||
if False:
|
||||
# and this gets somewhat interesting... we can still achieve non-trivial fixpoints
|
||||
# over multiple applications when training enough in-between
|
||||
with MixedFixpointExperiment() as exp:
|
||||
for run_id in range(10):
|
||||
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
|
||||
.with_params(epsilon=0.0001, activation='sigmoid')
|
||||
exp.run_net(net, 500, 10)
|
||||
|
||||
net.print_weights()
|
||||
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
exp.log(exp.counters)
|
||||
|
66
code/plotting/plotting_class.py
Normal file
66
code/plotting/plotting_class.py
Normal file
@ -0,0 +1,66 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
from sklearn.manifold.t_sne import TSNE, PCA
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
class DataPlotter:
|
||||
|
||||
def __init__(self, path=None):
|
||||
self.path = path or os.getcwd()
|
||||
pass
|
||||
|
||||
def search_and_apply(self, plotting_function, files_to_look_for=None, absolut_file_or_folder=None):
|
||||
absolut_file_or_folder, files_to_look_for = self.path or absolut_file_or_folder, list() or files_to_look_for
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
self.search_and_apply(plotting_function, files_to_look_for=files_to_look_for,
|
||||
absolut_file_or_folder=sub_file_or_folder.path)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists(
|
||||
'{}.html'.format(absolut_file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
|
||||
names_dill_location = os.path.join(*os.path.split(absolut_file_or_folder)[:-1], 'all_names.dill')
|
||||
with open(names_dill_location, 'rb') as in_f:
|
||||
names = dill.load(in_f)
|
||||
|
||||
try:
|
||||
plotting_function((names, exp), filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
except ValueError:
|
||||
pass
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
# This was either another FilyType or Plot.html already exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plotter = DataPlotter
|
||||
pass
|
109
code/plotting/task_learning_curves.py
Normal file
109
code/plotting/task_learning_curves.py
Normal file
@ -0,0 +1,109 @@
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
from experiment import TaskExperiment
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
import numpy as np
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def line_plot(exp: TaskExperiment, filename='lineplot'):
|
||||
assert isinstance(exp, TaskExperiment), ' This has to be a TaskExperiment!'
|
||||
traces, data = [], defaultdict(list)
|
||||
|
||||
color_scale = cl.scales['3']['div']['RdYlBu']
|
||||
|
||||
# Sort data per Key
|
||||
for message in exp.log_messages:
|
||||
for key in message.keys():
|
||||
try:
|
||||
data[key].append(-0.1 if np.isnan(message[key]) or np.isinf(message[key]) else message[key])
|
||||
except:
|
||||
data[key].append(message[key])
|
||||
|
||||
for line_id, key in enumerate(data.keys()):
|
||||
if key not in ['counters', 'id']:
|
||||
trace = go.Scatter(
|
||||
x=[x for x in range(len(data[key]))],
|
||||
y=data[key],
|
||||
name=key,
|
||||
line=dict(
|
||||
color=color_scale[line_id],
|
||||
width=5
|
||||
),
|
||||
)
|
||||
|
||||
traces.append(trace)
|
||||
else:
|
||||
continue
|
||||
|
||||
layout = dict(xaxis=dict(title='Trains per self-application', titlefont=dict(size=20)),
|
||||
yaxis=dict(title='Average amount of fixpoints found',
|
||||
titlefont=dict(size=20),
|
||||
# type='log',
|
||||
# range=[0, 2]
|
||||
),
|
||||
legend=dict(orientation='h', x=0.3, y=-0.3),
|
||||
# height=800, width=800,
|
||||
margin=dict(b=0)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=traces, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=None, override=False):
|
||||
# ToDo: Clean this Mess
|
||||
assert os.path.exists(absolut_file_or_folder), f'The given path does not exist! Given: {absolut_file_or_folder}'
|
||||
files_to_look_for = files_to_look_for or list()
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function,
|
||||
files_to_look_for=files_to_look_for, override=override)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for or not files_to_look_for:
|
||||
if not os.path.exists('{}.html'.format(absolut_file_or_folder[:-5])) or override:
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
|
||||
try:
|
||||
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
except ValueError:
|
||||
pass
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
# Plot.html already exists.
|
||||
pass
|
||||
else:
|
||||
# This was a wrong FilyType.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, line_plot, override=True)
|
@ -7,12 +7,13 @@ sys.path += os.path.join('..', '.')
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend as K
|
||||
|
||||
def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
|
||||
def count(counters, net, notable_nets: list=None):
|
||||
notable_nets = notable_nets or list()
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
@ -31,7 +32,7 @@ def count(counters, net, notable_nets=[]):
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
with Experiment('applying_fixpoint') as exp:
|
||||
with FixpointExperiment(name='applying_fixpoint') as exp:
|
||||
exp.trials = 50
|
||||
exp.run_count = 100
|
||||
exp.epsilon = 1e-4
|
||||
@ -40,7 +41,7 @@ if __name__ == '__main__':
|
||||
for use_bias in [False]:
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
# net_generators += [lambda activation=activation, use_bias=use_bias: RecurrentNeuralNetwork(width=2, depth=2).with_keras_params(activation=activation, use_bias=use_bias)]
|
||||
all_counters = []
|
||||
all_notable_nets = []
|
||||
all_names = []
|
||||
@ -50,14 +51,14 @@ if __name__ == '__main__':
|
||||
for _ in tqdm(range(exp.trials)):
|
||||
net = ParticleDecorator(net_generator())
|
||||
net.with_params(epsilon=exp.epsilon)
|
||||
name = str(net.net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
|
||||
name = str(net.name) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias=" + str(net.get_keras_params().get('use_bias'))
|
||||
for run_id in range(exp.run_count):
|
||||
loss = net.self_attack()
|
||||
count(counters, net, notable_nets)
|
||||
all_counters += [counters]
|
||||
all_notable_nets += [notable_nets]
|
||||
all_names += [name]
|
||||
K.clear_session()
|
||||
exp.reset_model()
|
||||
exp.save(all_counters=all_counters)
|
||||
exp.save(trajectorys=exp.without_particles())
|
||||
# net types reached in the end
|
||||
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
@ -1,4 +0,0 @@
|
||||
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
|
||||
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'zs': [0.0, 1.2, 5.2, 7.4, 8.1, 9.1, 9.6, 9.8, 10.0, 9.9, 9.9]}
|
||||
|
||||
|
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
Before Width: | Height: | Size: 207 KiB |
@ -11,7 +11,7 @@ from network import *
|
||||
from soup import *
|
||||
|
||||
|
||||
import tensorflow.python.keras.backend as K
|
||||
from tensorflow.python.keras import backend as K
|
||||
|
||||
from statistics import mean
|
||||
avg = mean
|
||||
@ -59,7 +59,7 @@ def count(counters, soup, notable_nets=None):
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
with SoupExperiment('learn-from-soup') as exp:
|
||||
with SoupExperiment(name='learn-from-soup') as exp:
|
||||
exp.soup_size = 10
|
||||
exp.soup_life = 100
|
||||
exp.trials = 10
|
||||
@ -83,10 +83,10 @@ if __name__ == '__main__':
|
||||
counters = generate_counters()
|
||||
results = []
|
||||
for _ in tqdm(range(exp.trials)):
|
||||
soup = Soup(exp.soup_size, lambda net_generator=net_generator,exp=exp: TrainingNeuralNetworkDecorator(net_generator()).with_params(epsilon=exp.epsilon))
|
||||
soup = Soup(exp.soup_size, lambda net_generator=net_generator, exp=exp: TrainingNeuralNetworkDecorator(net_generator()).with_params(epsilon=exp.epsilon))
|
||||
soup.with_params(attacking_rate=-1, learn_from_rate=0.1, train=0, learn_from_severity=learn_from_severity)
|
||||
soup.seed()
|
||||
name = str(soup.particles[0].net.__class__.__name__) + " activiation='" + str(soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(soup.particles[0].get_keras_params().get('use_bias'))
|
||||
name = str(soup.particles[0].name) + " activiation='" + str(soup.particles[0].get_keras_params().get('activation')) + "' use_bias=" + str(soup.particles[0].get_keras_params().get('use_bias'))
|
||||
for time in range(exp.soup_life):
|
||||
soup.evolve()
|
||||
count(counters, soup, notable_nets)
|
||||
|
@ -9,8 +9,6 @@ sys.path += os.path.join('..', '.')
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
"""
|
||||
@ -84,7 +82,7 @@ if __name__ == '__main__':
|
||||
if net.is_diverged() or net.is_fixpoint():
|
||||
break
|
||||
count(counters, net, notable_nets)
|
||||
keras.backend.clear_session()
|
||||
exp.reset_model()
|
||||
xs += [trains_per_selfattack]
|
||||
ys += [float(counters['fix_zero'] + counters['fix_other']) / float(exp.trials)]
|
||||
all_names += [name]
|
||||
|
@ -104,7 +104,7 @@ if __name__ == '__main__':
|
||||
for run_id in range(10):
|
||||
net = TrainingNeuralNetworkDecorator(FFTNeuralNetwork(2, width=2, depth=2))\
|
||||
.with_params(epsilon=0.0001, activation='sigmoid')
|
||||
exp.run_net(net, 500, 10)
|
||||
exp.run_net(net)
|
||||
|
||||
net.print_weights()
|
||||
|
||||
|
@ -10,23 +10,23 @@ from experiment import *
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
with SoupExperiment("soup") as exp:
|
||||
for run_id in range(1):
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(20, net_generator).with_params(remove_divergent=True, remove_zero=True,
|
||||
train=30,
|
||||
learn_from_rate=-1)
|
||||
soup.seed()
|
||||
for _ in tqdm(range(100)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
# you can access soup.historical_particles[particle_uid].states[time_step]['loss']
|
||||
# or soup.historical_particles[particle_uid].states[time_step]['weights']
|
||||
# from soup.dill
|
||||
exp.save(soup=soup.without_particles())
|
||||
with SoupExperiment(namne="soup") as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup = Soup(20, net_generator).with_params(remove_divergent=True, remove_zero=True,
|
||||
train=30,
|
||||
learn_from_rate=-1)
|
||||
soup.seed()
|
||||
for _ in tqdm(range(100)):
|
||||
soup.evolve()
|
||||
exp.log(soup.count())
|
||||
# you can access soup.historical_particles[particle_uid].states[time_step]['loss']
|
||||
# or soup.historical_particles[particle_uid].states[time_step]['weights']
|
||||
# from soup.dill
|
||||
exp.save(soup=soup.without_particles())
|
||||
K.clear_session()
|
||||
|
317
code/soup.py
317
code/soup.py
@ -1,12 +1,55 @@
|
||||
import random
|
||||
from tensorflow.python.keras.layers import Dense, Dropout, BatchNormalization
|
||||
from tensorflow.python.keras.layers import Input, Layer, Concatenate, RepeatVector, Reshape
|
||||
from tensorflow.python.keras.models import Sequential, Model
|
||||
from tensorflow.python.keras import backend as K
|
||||
|
||||
from network import *
|
||||
from typing import List, Tuple
|
||||
|
||||
# Functions and Operators
|
||||
from operator import mul
|
||||
from functools import reduce
|
||||
from itertools import accumulate
|
||||
|
||||
import numpy as np
|
||||
|
||||
from task import Task, TaskAdditionOfN
|
||||
|
||||
from copy import copy, deepcopy
|
||||
|
||||
from network import ParticleDecorator, WeightwiseNeuralNetwork, TrainingNeuralNetworkDecorator, \
|
||||
EarlyStoppingByInfNanLoss
|
||||
|
||||
from experiment import TaskingSoupExperiment
|
||||
|
||||
from math import sqrt
|
||||
|
||||
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
|
||||
class SlicingLayer(Layer):
|
||||
|
||||
def __init__(self):
|
||||
self.kernel: None
|
||||
self.inputs: int
|
||||
super(SlicingLayer, self).__init__()
|
||||
|
||||
def build(self, input_shape):
|
||||
# Create a trainable weight variable for this layer.
|
||||
self.kernel = None
|
||||
self.inputs = input_shape[-1]
|
||||
super(SlicingLayer, self).build(input_shape) # Be sure to call this at the end
|
||||
|
||||
def call(self, x, **kwargs):
|
||||
concats = [Concatenate()([x[:, i][..., None]] * self.inputs) for i in range(x.shape[-1].value)]
|
||||
return concats
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
return [Concatenate()([(None, 1)] * 4) for _ in range(input_shape[-1])]
|
||||
|
||||
|
||||
class Soup(object):
|
||||
|
||||
def __init__(self, size, generator, **kwargs):
|
||||
@ -14,24 +57,29 @@ class Soup(object):
|
||||
self.generator = generator
|
||||
self.particles = []
|
||||
self.historical_particles = {}
|
||||
self.params = dict(attacking_rate=0.1, learn_from_rate=0.1, train=0, learn_from_severity=1)
|
||||
self.params.update(kwargs)
|
||||
self.soup_params = dict(attacking_rate=0.1, learn_from_rate=0.1, train=0, learn_from_severity=1)
|
||||
self.soup_params.update(kwargs)
|
||||
self.time = 0
|
||||
self.is_seeded = False
|
||||
self.is_compiled = False
|
||||
|
||||
def __len__(self):
|
||||
return len(self.particles)
|
||||
|
||||
def __copy__(self):
|
||||
copy_ = Soup(self.size, self.generator, **self.params)
|
||||
copy_ = Soup(self.size, self.generator, **self.soup_params)
|
||||
copy_.__dict__ = {attr: self.__dict__[attr] for attr in self.__dict__ if
|
||||
attr not in ['particles', 'historical_particles']}
|
||||
return copy_
|
||||
|
||||
def without_particles(self):
|
||||
self_copy = copy.copy(self)
|
||||
self_copy = copy(self)
|
||||
# self_copy.particles = [particle.states for particle in self.particles]
|
||||
self_copy.historical_particles = {key: val.states for key, val in self.historical_particles.items()}
|
||||
return self_copy
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
self.params.update(kwargs)
|
||||
def with_soup_params(self, **kwargs):
|
||||
self.soup_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def generate_particle(self):
|
||||
@ -43,9 +91,13 @@ class Soup(object):
|
||||
return self.historical_particles.get(uid, otherwise)
|
||||
|
||||
def seed(self):
|
||||
self.particles = []
|
||||
for _ in range(self.size):
|
||||
self.particles += [self.generate_particle()]
|
||||
if not self.is_seeded:
|
||||
self.particles = []
|
||||
for _ in range(self.size):
|
||||
self.particles += [self.generate_particle()]
|
||||
else:
|
||||
print('already seeded!')
|
||||
self.is_seeded = True
|
||||
return self
|
||||
|
||||
def evolve(self, iterations=1):
|
||||
@ -53,33 +105,36 @@ class Soup(object):
|
||||
self.time += 1
|
||||
for particle_id, particle in enumerate(self.particles):
|
||||
description = {'time': self.time}
|
||||
if prng() < self.params.get('attacking_rate'):
|
||||
if prng() < self.soup_params.get('attacking_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
particle.attack(other_particle)
|
||||
description['action'] = 'attacking'
|
||||
description['counterpart'] = other_particle.get_uid()
|
||||
if prng() < self.params.get('learn_from_rate'):
|
||||
|
||||
if prng() < self.soup_params.get('learn_from_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
for _ in range(self.params.get('learn_from_severity', 1)):
|
||||
for _ in range(self.soup_params.get('learn_from_severity', 1)):
|
||||
particle.learn_from(other_particle)
|
||||
description['action'] = 'learn_from'
|
||||
description['counterpart'] = other_particle.get_uid()
|
||||
for _ in range(self.params.get('train', 0)):
|
||||
particle.compiled()
|
||||
|
||||
for _ in range(self.soup_params.get('train', 0)):
|
||||
# callbacks on save_state are broken for TrainingNeuralNetwork
|
||||
loss = particle.train(store_states=False)
|
||||
description['fitted'] = self.params.get('train', 0)
|
||||
description['fitted'] = self.soup_params.get('train', 0)
|
||||
description['loss'] = loss
|
||||
description['action'] = 'train_self'
|
||||
description['counterpart'] = None
|
||||
if self.params.get('remove_divergent') and particle.is_diverged():
|
||||
|
||||
if self.soup_params.get('remove_divergent') and particle.is_diverged():
|
||||
new_particle = self.generate_particle()
|
||||
self.particles[particle_id] = new_particle
|
||||
description['action'] = 'divergent_dead'
|
||||
description['counterpart'] = new_particle.get_uid()
|
||||
if self.params.get('remove_zero') and particle.is_zero():
|
||||
|
||||
if self.soup_params.get('remove_zero') and particle.is_zero():
|
||||
new_particle = self.generate_particle()
|
||||
self.particles[particle_id] = new_particle
|
||||
description['action'] = 'zweo_dead'
|
||||
@ -108,30 +163,214 @@ class Soup(object):
|
||||
print(particle.is_fixpoint())
|
||||
|
||||
|
||||
class TaskingSoup(Soup):
|
||||
|
||||
@staticmethod
|
||||
def weights_to_flat_array(weights: List[np.ndarray]) -> np.ndarray:
|
||||
return np.concatenate([d.ravel() for d in weights])
|
||||
|
||||
@staticmethod
|
||||
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
|
||||
# Same thing, but with an additional np call
|
||||
# sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
|
||||
sizes = [reduce(mul, shape) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
|
||||
def __init__(self, population_size: int, task: Task, particle_generator, sparsity_rate=0.1, use_bias=False,
|
||||
safe=True, **kwargs):
|
||||
|
||||
if safe:
|
||||
input_shape_error_message = f'The population size must be devideable by {task.input_shape[-1]}'
|
||||
assert population_size % task.input_shape[-1] == 0, input_shape_error_message
|
||||
assert population_size % 2 == 0, 'The population size needs to be of even value'
|
||||
|
||||
super(TaskingSoup, self).__init__(population_size, particle_generator, **kwargs)
|
||||
self.task = task
|
||||
self.model: Sequential
|
||||
|
||||
self.network_params = dict(sparsity_rate=sparsity_rate, early_nan_stopping=True, use_bias=use_bias,
|
||||
depth=population_size // task.input_shape[-1])
|
||||
self.network_params.update(kwargs.get('network_params', {}))
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.compile_params.update(kwargs.get('compile_params', {}))
|
||||
|
||||
def with_network_params(self, **params):
|
||||
self.network_params.update(params)
|
||||
|
||||
def _generate_model(self):
|
||||
particle_idx_list = list(range(len(self)))
|
||||
particles_per_layer = len(self) // self.network_params.get('depth')
|
||||
task_input = Input(self.task.input_shape, name='Task_Input')
|
||||
# First layer, which is conected to the input layer and independently trainable / not trainable at all.
|
||||
input_neurons = particles_per_layer * self.task.output_shape
|
||||
x = Dense(input_neurons, use_bias=self.network_params.get('use_bias'))(task_input)
|
||||
x = SlicingLayer()(x)
|
||||
|
||||
for layer_num in range(self.network_params.get('depth')):
|
||||
# This needs to be tensors, because particles come as keras models that applicable
|
||||
x = [self.particles[layer_num*particles_per_layer + i].get_model()(x[i]) for
|
||||
i in range(particles_per_layer)]
|
||||
x = [RepeatVector(particles_per_layer)(x[i]) for i in range(particles_per_layer)]
|
||||
x = [Reshape((particles_per_layer,))(x[i]) for i in range(particles_per_layer)]
|
||||
x = Concatenate()(x)
|
||||
x = Dense(self.task.output_shape, use_bias=self.network_params.get('use_bias'), activation='linear')(x)
|
||||
|
||||
model = Model(inputs=task_input, outputs=x)
|
||||
return model
|
||||
|
||||
def get_weights(self):
|
||||
return self.model.get_weights()
|
||||
|
||||
def set_weights(self, weights: List[np.ndarray]):
|
||||
self.model.set_weights(weights)
|
||||
|
||||
def set_intermediate_weights(self, weights: List[np.ndarray]):
|
||||
all_weights = self.get_weights()
|
||||
all_weights[1:-1] = weights
|
||||
self.set_weights(all_weights)
|
||||
|
||||
def get_intermediate_weights(self):
|
||||
return self.get_weights()[1:-1]
|
||||
|
||||
def seed(self):
|
||||
K.clear_session()
|
||||
self.is_compiled = False
|
||||
super(TaskingSoup, self).seed()
|
||||
self.model = self._generate_model()
|
||||
pass
|
||||
|
||||
def compile_model(self, **kwargs):
|
||||
if not self.is_compiled:
|
||||
compile_params = deepcopy(self.compile_params)
|
||||
compile_params.update(kwargs)
|
||||
return self.model.compile(**compile_params)
|
||||
else:
|
||||
raise BrokenPipeError('This Model is not compiled yet! Something went wrong in the Pipeline!')
|
||||
|
||||
def get_total_weight_amount(self):
|
||||
if self.is_seeded:
|
||||
return sum([x.get_amount_of_weights() for x in self.particles])
|
||||
else:
|
||||
return 0
|
||||
|
||||
def get_shapes(self):
|
||||
return [x.shape for x in self.get_weights()]
|
||||
|
||||
def get_intermediate_shapes(self):
|
||||
weights = [x.shape for x in self.get_weights()]
|
||||
return weights[2:-2] if self.network_params.get('use_bias') else weights[1:-1]
|
||||
|
||||
def predict(self, x):
|
||||
return self.model.predict(x)
|
||||
|
||||
def evolve(self, iterations=1):
|
||||
for iteration in range(iterations):
|
||||
super(TaskingSoup, self).evolve(iterations=1)
|
||||
self.train_particles()
|
||||
|
||||
def get_particle_weights(self):
|
||||
return np.concatenate([x.get_weights_flat() for x in self.particles])
|
||||
|
||||
def get_particle_input_shape(self):
|
||||
if self.is_seeded:
|
||||
return tuple([x if x else -1 for x in self.particles[0].get_model().input_shape])
|
||||
else:
|
||||
return -1
|
||||
|
||||
def set_particle_weights(self, weights):
|
||||
particle_weight_shape = self.particles[0].shapes(self.particles[0].get_weights())
|
||||
sizes = [x.get_amount_of_weights() for x in self.particles]
|
||||
flat_weights = self.weights_to_flat_array(weights)
|
||||
slices = [flat_weights[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
|
||||
for particle, slice in zip(self.particles, slices):
|
||||
new_weights = self.reshape_flat_array(slice, particle_weight_shape)
|
||||
particle.set_weights(new_weights)
|
||||
return True
|
||||
|
||||
def compiled(self, **kwargs):
|
||||
if not self.is_compiled:
|
||||
self.compile_model(**kwargs)
|
||||
self.is_compiled = True
|
||||
return self
|
||||
|
||||
def train(self, batchsize=1, epoch=0):
|
||||
self.compiled()
|
||||
x, y = self.task.get_samples()
|
||||
callbacks = []
|
||||
if self.network_params.get('early_nan_stopping'):
|
||||
callbacks.append(EarlyStoppingByInfNanLoss())
|
||||
|
||||
# 'or' does not work on empty lists
|
||||
callbacks = callbacks if callbacks else None
|
||||
"""
|
||||
Please Note:
|
||||
|
||||
epochs: Integer. Number of epochs to train the model.
|
||||
An epoch is an iteration over the entire `x` and `y`
|
||||
data provided.
|
||||
Note that in conjunction with `initial_epoch`,
|
||||
`epochs` is to be understood as "final epoch".
|
||||
The model is not trained for a number of iterations
|
||||
given by `epochs`, but merely until the epoch
|
||||
of index `epochs` is reached."""
|
||||
history = self.model.fit(x=x, y=y, initial_epoch=epoch, epochs=epoch + 1, verbose=0,
|
||||
batch_size=batchsize, callbacks=callbacks)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def train_particles(self, **kwargs):
|
||||
self.compiled()
|
||||
weights = self.get_particle_weights()
|
||||
shaped_weights = self.reshape_flat_array(weights, self.get_intermediate_shapes())
|
||||
self.set_intermediate_weights(shaped_weights)
|
||||
_ = self.train(**kwargs) # This returns the loss values
|
||||
new_weights = self.get_intermediate_weights()
|
||||
self.set_particle_weights(new_weights)
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup_generator = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
exp = SoupExperiment()
|
||||
exp.run_exp(net_generator, 1000, soup_generator, 1, False)
|
||||
from task import TaskAdditionOfN
|
||||
|
||||
# net_generator = lambda: FFTNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(
|
||||
WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
)
|
||||
soup_generator = lambda: TaskingSoup(20, TaskAdditionOfN(4), net_generator)
|
||||
with TaskingSoupExperiment(soup_generator, name='solving_soup') as exp:
|
||||
exp.run_exp(reset_model=False)
|
||||
|
||||
if True:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
soup_generator = lambda: Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True, train=20)
|
||||
exp = SoupExperiment(name="soup")
|
||||
if False:
|
||||
soup_generator = lambda: Soup(10, net_generator).with_soup_params(remove_divergent=True, remove_zero=True)
|
||||
with SoupExperiment(soup_generator, name='soup') as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(
|
||||
WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
)
|
||||
|
||||
exp.run_exp(net_generator, 100, soup_generator, 1, False)
|
||||
exp.run_exp(net_generator)
|
||||
|
||||
# net_generator = lambda: FFTNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
||||
if False:
|
||||
soup_generator = lambda: Soup(10, net_generator).with_soup_params(remove_divergent=True, remove_zero=True)
|
||||
with SoupExperiment(soup_generator, name='soup') as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
|
||||
exp.run_exp(net_generator)
|
||||
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
32
code/task.py
Normal file
32
code/task.py
Normal file
@ -0,0 +1,32 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
class Task(ABC):
|
||||
|
||||
def __init__(self, input_shape, output_shape, **kwargs):
|
||||
assert any([x not in kwargs.keys() for x in ["input_shape", "output_shape"]]), 'Dublicated arguments were given'
|
||||
self.input_shape = input_shape
|
||||
self.output_shape = output_shape
|
||||
self.batchsize = kwargs.get('batchsize', 100)
|
||||
|
||||
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TaskAdditionOfN(Task):
|
||||
|
||||
def __init__(self, n: int, input_shape=(4,), output_shape=1, **kwargs):
|
||||
assert any([x not in kwargs.keys() for x in ["input_shape", "output_shape"]]), 'Dublicated arguments were given'
|
||||
assert n <= input_shape[0], f'You cannot Add more values (n={n}) than your input is long (in={input_shape}).'
|
||||
kwargs.update(input_shape=input_shape, output_shape=output_shape)
|
||||
super(TaskAdditionOfN, self).__init__(**kwargs)
|
||||
self.n = n
|
||||
|
||||
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
|
||||
x = np.zeros((self.batchsize, *self.input_shape))
|
||||
x[:, :self.n] = np.random.standard_normal((self.batchsize, self.n)) * 0.5
|
||||
y = np.sum(x, axis=1)
|
||||
return x, y
|
Reference in New Issue
Block a user