Bug Resolved in Particle.is_zero()
Now at normal execution Times
This commit is contained in:
parent
4b7999479f
commit
93bbda54a1
@ -167,10 +167,11 @@ class SoupExperiment(Experiment):
|
||||
for i in range(soup_iterations):
|
||||
soup = soup_generator()
|
||||
soup.seed()
|
||||
for _ in tqdm(exp_iterations):
|
||||
for _ in tqdm(range(exp_iterations)):
|
||||
soup.evolve()
|
||||
self.log(soup.count())
|
||||
self.save(soup=soup.without_particles())
|
||||
K.clear_session()
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
146
code/network.py
146
code/network.py
@ -3,6 +3,9 @@ from abc import abstractmethod, ABC
|
||||
from typing import List, Union, Tuple
|
||||
from types import FunctionType
|
||||
|
||||
from operator import mul
|
||||
from functools import reduce
|
||||
|
||||
from tensorflow.python.keras.models import Sequential
|
||||
from tensorflow.python.keras.callbacks import Callback
|
||||
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
||||
@ -27,17 +30,10 @@ class SaveStateCallback(Callback):
|
||||
return
|
||||
|
||||
|
||||
class WeightToolBox:
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Weight class, for easy manipulation of weight vectors from Keras models
|
||||
"""
|
||||
|
||||
# TODO: implement a way to access the cells directly
|
||||
# self.cells = len(self)
|
||||
# TODO: implement a way to access the weights directly
|
||||
# self.weights = self.to_flat_array() ?
|
||||
class NeuralNetwork(ABC):
|
||||
"""
|
||||
This is the Base Network Class, including abstract functions that must be implemented.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def max(weights: List[np.ndarray]):
|
||||
@ -48,11 +44,15 @@ class WeightToolBox:
|
||||
return np.average(weights)
|
||||
|
||||
@staticmethod
|
||||
def weight_amount(weights: List[np.ndarray]):
|
||||
return np.sum([x.size for x in weights])
|
||||
def are_weights_diverged(weights: List[np.ndarray]) -> bool:
|
||||
return any([any((np.isnan(x).any(), np.isinf(x).any())) for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def len(weights: List[np.ndarray]):
|
||||
def are_weights_within_bounds(weights: List[np.ndarray], lower_bound: float, upper_bound: float) -> bool:
|
||||
return any([((lower_bound < x) & (x < upper_bound)).any() for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def weight_amount(weights: List[np.ndarray]):
|
||||
return sum([x.size for x in weights])
|
||||
|
||||
@staticmethod
|
||||
@ -64,50 +64,23 @@ class WeightToolBox:
|
||||
return len(weights)
|
||||
|
||||
def repr(self, weights: List[np.ndarray]):
|
||||
return f'Weights({self.to_flat_array(weights).tolist()})'
|
||||
return f'Weights({self.weights_to_flat_array(weights).tolist()})'
|
||||
|
||||
@staticmethod
|
||||
def to_flat_array(weights: List[np.ndarray]) -> np.ndarray:
|
||||
return np.hstack([weight.flatten() for weight in weights])
|
||||
def weights_to_flat_array(weights: List[np.ndarray]) -> np.ndarray:
|
||||
return np.concatenate([d.ravel() for d in weights])
|
||||
|
||||
@staticmethod
|
||||
def reshape_flat_array(array, shapes) -> List[np.ndarray]:
|
||||
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
|
||||
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
|
||||
sizes = [reduce(mul, shape) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(np.cumsum([0] + sizes), np.cumsum([0] + sizes)[1:])]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
|
||||
def reshape_flat_array_like(self, array, weights: List[np.ndarray]) -> List[np.ndarray]:
|
||||
return self.reshape_flat_array(array, self.shapes(weights))
|
||||
|
||||
def shuffle_weights(self, weights: List[np.ndarray]):
|
||||
flat = self.to_flat_array(weights)
|
||||
np.random.shuffle(flat)
|
||||
return self.reshape_flat_array_like(flat, weights)
|
||||
|
||||
@staticmethod
|
||||
def are_diverged(weights: List[np.ndarray]) -> bool:
|
||||
return any([np.isnan(x).any() for x in weights]) or any([np.isinf(x).any() for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def are_within_bounds(weights: List[np.ndarray], lower_bound: float, upper_bound: float) -> bool:
|
||||
return bool(sum([((lower_bound < x) & (x > upper_bound)).size for x in weights]))
|
||||
|
||||
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
|
||||
collection_sizes = self.len(weights) // num_aggregates
|
||||
weights = self.to_flat_array(weights)[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
aggregated_weights = func(weights, num_aggregates)
|
||||
left_overs = self.to_flat_array(weights)[collection_sizes * num_aggregates:]
|
||||
return aggregated_weights, left_overs
|
||||
|
||||
|
||||
class NeuralNetwork(ABC):
|
||||
"""
|
||||
This is the Base Network Class, including abstract functions that must be implemented.
|
||||
"""
|
||||
|
||||
def __init__(self, **params):
|
||||
super().__init__()
|
||||
self.params = dict(epsilon=0.00000000000001)
|
||||
@ -131,25 +104,21 @@ class NeuralNetwork(ABC):
|
||||
self.keras_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def print_weights(self, weights=None):
|
||||
print(self.repr(weights or self.get_weights()))
|
||||
|
||||
def get_weights(self) -> List[np.ndarray]:
|
||||
return self.model.get_weights()
|
||||
|
||||
def get_weights_flat(self) -> np.ndarray:
|
||||
return weightToolBox.to_flat_array(self.get_weights())
|
||||
return self.weights_to_flat_array(self.get_weights())
|
||||
|
||||
def reshape_flat_array_like(self, array, weights: List[np.ndarray]) -> List[np.ndarray]:
|
||||
return self.reshape_flat_array(array, self.shapes(weights))
|
||||
|
||||
def set_weights(self, new_weights: List[np.ndarray]):
|
||||
return self.model.set_weights(new_weights)
|
||||
|
||||
@abstractmethod
|
||||
def get_samples(self):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_to_network(self, other_network) -> List[np.ndarray]:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
@ -177,11 +146,11 @@ class NeuralNetwork(ABC):
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def is_diverged(self):
|
||||
return weightToolBox.are_diverged(self.get_weights())
|
||||
return self.are_weights_diverged(self.get_weights())
|
||||
|
||||
def is_zero(self, epsilon=None):
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
return weightToolBox.are_within_bounds(self.get_weights(), -epsilon, epsilon)
|
||||
return self.are_weights_within_bounds(self.get_weights(), -epsilon, epsilon)
|
||||
|
||||
def is_fixpoint(self, degree: int = 1, epsilon: float = None) -> bool:
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
@ -191,17 +160,38 @@ class NeuralNetwork(ABC):
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if weightToolBox.are_diverged(new_weights):
|
||||
if self.are_weights_diverged(new_weights):
|
||||
return False
|
||||
|
||||
biggerEpsilon = (np.abs(weightToolBox.to_flat_array(new_weights) - weightToolBox.to_flat_array(self.get_weights()))
|
||||
>= epsilon).any()
|
||||
flat_new = self.weights_to_flat_array(new_weights)
|
||||
flat_old = self.weights_to_flat_array(self.get_weights())
|
||||
biggerEpsilon = (np.abs(flat_new - flat_old) >= epsilon).any()
|
||||
|
||||
# Boolean Value needs to be flipped to answer "is_fixpoint"
|
||||
return not biggerEpsilon
|
||||
|
||||
def print_weights(self, weights=None):
|
||||
print(weightToolBox.repr(weights or self.get_weights()))
|
||||
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
|
||||
collection_sizes = self.len(weights) // num_aggregates
|
||||
flat = self.weights_to_flat_array(weights)
|
||||
weights = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
left_overs = flat[collection_sizes * num_aggregates:]
|
||||
aggregated_weights = func(weights, num_aggregates)
|
||||
return aggregated_weights, left_overs
|
||||
|
||||
def shuffle_weights(self, weights: List[np.ndarray]):
|
||||
flat = self.weights_to_flat_array(weights)
|
||||
np.random.shuffle(flat)
|
||||
return self.reshape_flat_array_like(flat, weights)
|
||||
|
||||
@abstractmethod
|
||||
def get_samples(self):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class ParticleDecorator:
|
||||
@ -281,10 +271,10 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
def apply_to_weights(self, weights) -> List[np.ndarray]:
|
||||
# ToDo: Insert DocString
|
||||
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
|
||||
transformed_weights = self.get_samples(weights)[0]
|
||||
transformed_weights, _ = self.get_samples(weights)
|
||||
new_flat_weights = self.apply(transformed_weights)
|
||||
# use the original weight shape to transform the new tensor
|
||||
return weightToolBox.reshape_flat_array_like(new_flat_weights, weights)
|
||||
return self.reshape_flat_array_like(new_flat_weights, weights)
|
||||
|
||||
|
||||
class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
@ -306,8 +296,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def deaggregate_identically(aggregate, amount):
|
||||
# ToDo: Find a better way than using the a hardcoded [0]
|
||||
return np.hstack([aggregate for _ in range(amount)])[0]
|
||||
return np.repeat(aggregate, amount, axis=0)
|
||||
|
||||
@staticmethod
|
||||
def shuffle_not(weights: List[np.ndarray]):
|
||||
@ -321,9 +310,8 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
"""
|
||||
return weights
|
||||
|
||||
@staticmethod
|
||||
def shuffle_random(weights: List[np.ndarray]):
|
||||
weights = weightToolBox.shuffle_weights(weights)
|
||||
def shuffle_random(self, weights: List[np.ndarray]):
|
||||
weights = self.shuffle_weights(weights)
|
||||
return weights
|
||||
|
||||
def __init__(self, aggregates, width, depth, **kwargs):
|
||||
@ -347,14 +335,14 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
return self.params.get('shuffler', self.shuffle_not)
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
return weightToolBox.weight_amount(self.get_weights())
|
||||
return self.weight_amount(self.get_weights())
|
||||
|
||||
def apply(self, inputs):
|
||||
# You need to add an dimension here... "..." copies array values
|
||||
return self.model.predict(inputs[None, ...])
|
||||
|
||||
def get_aggregated_weights(self):
|
||||
return weightToolBox.aggregate_weights_by(self.get_weights(), self.get_aggregator(), self.aggregates)
|
||||
return self.aggregate_weights_by(self.get_weights(), self.get_aggregator(), self.aggregates)
|
||||
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
|
||||
@ -367,8 +355,8 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_aggregations = self.deaggregate_identically(new_aggregations, collection_sizes)
|
||||
# generate new weights
|
||||
# only include leftovers if there are some then coonvert them to Weight on base of th old shape
|
||||
complete_weights = new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers))
|
||||
new_weights = weightToolBox.reshape_flat_array_like(complete_weights, old_weights)
|
||||
complete_weights = new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers))
|
||||
new_weights = self.reshape_flat_array_like(complete_weights, old_weights)
|
||||
|
||||
# maybe shuffle
|
||||
new_weights = self.get_shuffler()(new_weights)
|
||||
@ -389,7 +377,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if weightToolBox.are_diverged(new_weights):
|
||||
if self.are_weights_diverged(new_weights):
|
||||
return False
|
||||
|
||||
new_aggregations, leftovers = self.get_aggregated_weights()
|
||||
@ -505,8 +493,6 @@ class TrainingNeuralNetworkDecorator:
|
||||
return history.history['loss'][-1]
|
||||
|
||||
|
||||
weightToolBox = WeightToolBox()
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if False:
|
||||
@ -518,7 +504,7 @@ if __name__ == '__main__':
|
||||
exp.run_exp(net_generator, 10, logging=True)
|
||||
exp.reset_all()
|
||||
|
||||
if False:
|
||||
if True:
|
||||
# Aggregating Neural Network
|
||||
net_generator = lambda: ParticleDecorator(
|
||||
AggregatingNeuralNetwork(aggregates=4, width=2, depth=2
|
||||
|
@ -29,3 +29,4 @@ if __name__ == '__main__':
|
||||
# or soup.historical_particles[particle_uid].states[time_step]['weights']
|
||||
# from soup.dill
|
||||
exp.save(soup=soup.without_particles())
|
||||
K.clear_session()
|
||||
|
43
code/soup.py
43
code/soup.py
@ -67,7 +67,6 @@ class Soup(object):
|
||||
description['action'] = 'learn_from'
|
||||
description['counterpart'] = other_particle.get_uid()
|
||||
for _ in range(self.params.get('train', 0)):
|
||||
particle.compiled()
|
||||
# callbacks on save_state are broken for TrainingNeuralNetwork
|
||||
loss = particle.train(store_states=False)
|
||||
description['fitted'] = self.params.get('train', 0)
|
||||
@ -110,28 +109,30 @@ class Soup(object):
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
soup_generator = Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
exp = SoupExperiment()
|
||||
exp.run_exp(net_generator, 10, soup_generator, 1, False)
|
||||
with SoupExperiment(name='soup') as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(
|
||||
WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
)
|
||||
soup_generator = lambda: Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True)
|
||||
exp.run_exp(net_generator, 10, soup_generator, 1, False)
|
||||
|
||||
# net_generator = lambda: FFTNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: FFTNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
||||
if True:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
soup_generator = lambda: Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True, train=20)
|
||||
exp = SoupExperiment(name="soup")
|
||||
with SoupExperiment(name='soup') as exp:
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)) \
|
||||
.with_keras_params(activation='linear').with_params(epsilon=0.0001)
|
||||
soup_generator = lambda: Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True, train=20)
|
||||
|
||||
exp.run_exp(net_generator, 10, soup_generator, 1, False)
|
||||
exp.run_exp(net_generator, 10, soup_generator, 1, False)
|
||||
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, 2, 2))
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: TrainingNeuralNetworkDecorator(FFTNeuralNetwork(4, 2, 2))\
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
Loading…
x
Reference in New Issue
Block a user