673 lines
24 KiB
Python
673 lines
24 KiB
Python
# Librarys
|
|
import numpy as np
|
|
from abc import abstractmethod, ABC
|
|
from typing import List, Tuple
|
|
from types import FunctionType
|
|
import warnings
|
|
|
|
import os
|
|
|
|
# Functions and Operators
|
|
from operator import mul
|
|
from functools import reduce
|
|
from itertools import accumulate
|
|
from copy import deepcopy
|
|
|
|
# Deep learning Framework
|
|
from tensorflow.python.keras.models import Sequential
|
|
from tensorflow.python.keras.callbacks import Callback
|
|
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
|
|
|
# Experiment Class
|
|
from task import TaskAdditionOfN
|
|
from experiment import TaskExperiment
|
|
|
|
# Supress warnings and info messages
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
|
|
class SaveStateCallback(Callback):
|
|
def __init__(self, network, epoch=0):
|
|
super(SaveStateCallback, self).__init__()
|
|
self.net = network
|
|
self.init_epoch = epoch
|
|
|
|
def on_epoch_end(self, epoch, logs=None):
|
|
description = dict(time=epoch+self.init_epoch)
|
|
description['action'] = 'train_self'
|
|
description['counterpart'] = None
|
|
self.net.save_state(**description)
|
|
return
|
|
|
|
|
|
class EarlyStoppingByInfNanLoss(Callback):
|
|
def __init__(self, monitor='loss', verbose=0):
|
|
super(Callback, self).__init__()
|
|
self.monitor = monitor
|
|
self.verbose = verbose
|
|
|
|
def on_epoch_end(self, epoch, logs: dict = None):
|
|
logs = logs or dict()
|
|
current = logs.get(self.monitor)
|
|
if current is None:
|
|
warnings.warn(f'Early stopping requires {self.monitor} available!', RuntimeWarning)
|
|
pass
|
|
|
|
if np.isnan(current) or np.isinf(current):
|
|
if self.verbose > 0:
|
|
print(f'Epoch {epoch}: early stopping THR')
|
|
self.model.stop_training = True
|
|
|
|
|
|
class NeuralNetwork(ABC):
|
|
"""
|
|
This is the Base Network Class, including abstract functions that must be implemented.
|
|
"""
|
|
|
|
@staticmethod
|
|
def are_weights_diverged(weights: List[np.ndarray]) -> bool:
|
|
return any([any((np.isnan(x).any(), np.isinf(x).any())) for x in weights])
|
|
|
|
@staticmethod
|
|
def are_weights_within_bounds(weights: List[np.ndarray], lower_bound: float, upper_bound: float) -> bool:
|
|
return any([((lower_bound < x) & (x < upper_bound)).any() for x in weights])
|
|
|
|
@staticmethod
|
|
def get_weight_amount(weights: List[np.ndarray]):
|
|
return sum([x.size for x in weights])
|
|
|
|
@staticmethod
|
|
def shapes(weights: List[np.ndarray]):
|
|
return [x.shape for x in weights]
|
|
|
|
@staticmethod
|
|
def num_layers(weights: List[np.ndarray]):
|
|
return len(weights)
|
|
|
|
def repr(self, weights: List[np.ndarray]):
|
|
return f'Weights({self.weights_to_flat_array(weights).tolist()})'
|
|
|
|
@staticmethod
|
|
def weights_to_flat_array(weights: List[np.ndarray]) -> np.ndarray:
|
|
return np.concatenate([d.ravel() for d in weights])
|
|
|
|
@staticmethod
|
|
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
|
|
# Same thing, but with an additional np call
|
|
# sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
|
|
|
sizes = [reduce(mul, shape) for shape in shapes]
|
|
# Split the incoming array into slices for layers
|
|
slices = [array[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
|
|
# reshape them in accordance to the given shapes
|
|
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
|
return weights
|
|
|
|
def __init__(self, **params):
|
|
super().__init__()
|
|
self.params = dict(epsilon=0.00000000000001, early_nan_stopping=True, store_states=False)
|
|
self.params.update(params)
|
|
self.name = params.get('name', self.__class__.__name__)
|
|
self.keras_params = dict(activation='linear', use_bias=False)
|
|
self.states = []
|
|
self.model: Sequential
|
|
|
|
def get_params(self) -> dict:
|
|
return self.params
|
|
|
|
def get_keras_params(self) -> dict:
|
|
return self.keras_params
|
|
|
|
def with_params(self, **kwargs):
|
|
self.params.update(kwargs)
|
|
return self
|
|
|
|
def with_keras_params(self, **kwargs):
|
|
self.keras_params.update(kwargs)
|
|
return self
|
|
|
|
def print_weights(self, weights=None):
|
|
print(self.repr(weights or self.get_weights()))
|
|
|
|
def get_amount_of_weights(self):
|
|
return self.get_weight_amount(self.get_weights())
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def get_weights(self) -> List[np.ndarray]:
|
|
return self.get_model().get_weights()
|
|
|
|
def get_weights_flat(self) -> np.ndarray:
|
|
return self.weights_to_flat_array(self.get_weights())
|
|
|
|
def reshape_flat_array_like(self, array, weights: List[np.ndarray]) -> List[np.ndarray]:
|
|
return self.reshape_flat_array(array, self.shapes(weights))
|
|
|
|
def set_weights(self, new_weights: List[np.ndarray]):
|
|
return self.model.set_weights(new_weights)
|
|
|
|
def apply_to_network(self, other_network) -> List[np.ndarray]:
|
|
"""
|
|
Take a networks weights and apply _this_ networks function.
|
|
:param other_network:
|
|
:return:
|
|
"""
|
|
new_weights = self.apply_to_weights(other_network.get_weights())
|
|
return new_weights
|
|
|
|
def is_diverged(self):
|
|
return self.are_weights_diverged(self.get_weights())
|
|
|
|
def is_zero(self, epsilon=None):
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
return self.are_weights_within_bounds(self.get_weights(), -epsilon, epsilon)
|
|
|
|
def is_fixpoint(self, degree: int = 1, epsilon: float = None) -> bool:
|
|
assert degree >= 1, "degree must be >= 1"
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
|
|
new_weights = deepcopy(self.get_weights())
|
|
|
|
for _ in range(degree):
|
|
new_weights = self.apply_to_weights(new_weights)
|
|
if self.are_weights_diverged(new_weights):
|
|
return False
|
|
|
|
flat_new = self.weights_to_flat_array(new_weights)
|
|
flat_old = self.weights_to_flat_array(self.get_weights())
|
|
biggerEpsilon = (np.abs(flat_new - flat_old) >= epsilon).any()
|
|
|
|
# Boolean Value needs to be flipped to answer "is_fixpoint"
|
|
return not biggerEpsilon
|
|
|
|
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
|
|
collection_sizes = self.get_weight_amount(weights) // num_aggregates
|
|
flat = self.weights_to_flat_array(weights)
|
|
array_for_aggregation = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
|
left_overs = flat[collection_sizes * num_aggregates:]
|
|
aggregated_weights = func(array_for_aggregation, num_aggregates)
|
|
return aggregated_weights, left_overs
|
|
|
|
def shuffle_weights(self, weights: List[np.ndarray]):
|
|
flat = self.weights_to_flat_array(weights)
|
|
np.random.shuffle(flat)
|
|
return self.reshape_flat_array_like(flat, weights)
|
|
|
|
@abstractmethod
|
|
def get_samples(self, **kwargs):
|
|
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
|
"""
|
|
Take weights as inputs; retunr the evaluation of _this_ network.
|
|
"Apply this function".
|
|
|
|
:param old_weights:
|
|
:return:
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class ParticleDecorator:
|
|
next_uid = 0
|
|
|
|
def __init__(self, network):
|
|
|
|
# ToDo: Add DocString, What does it do?
|
|
|
|
self.uid = self.__class__.next_uid
|
|
self.__class__.next_uid += 1
|
|
self.network = network
|
|
self.states = []
|
|
self.save_state(time=0, action='init', counterpart=None)
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.network, name)
|
|
|
|
def get_uid(self):
|
|
return self.uid
|
|
|
|
def make_state(self, **kwargs):
|
|
if self.network.is_diverged():
|
|
return None
|
|
state = {'class': self.network.__class__.__name__, 'weights': self.network.get_weights_flat()}
|
|
state.update(kwargs)
|
|
return state
|
|
|
|
def save_state(self, **kwargs):
|
|
state = self.make_state(**kwargs)
|
|
if state is not None:
|
|
self.states += [state]
|
|
else:
|
|
pass
|
|
return True
|
|
|
|
def update_state(self, number, **kwargs):
|
|
raise NotImplementedError('Result is vague')
|
|
# if number < len(self.states):
|
|
# self.states[number] = self.make_state(**kwargs)
|
|
# else:
|
|
# for i in range(len(self.states), number):
|
|
# self.states += [None]
|
|
# self.states += self.make_state(**kwargs)
|
|
|
|
def get_states(self):
|
|
return self.states
|
|
|
|
def attack(self, other_network, iterations: int = 1):
|
|
"""
|
|
Set a networks weights based on the output of the application of my function to its weights.
|
|
"Alter a networks weights based on my evaluation"
|
|
:param other_network:
|
|
:param iterations:
|
|
:return:
|
|
"""
|
|
for _ in range(iterations):
|
|
other_network.set_weights(self.apply_to_network(other_network))
|
|
return self
|
|
|
|
def self_attack(self, iterations: int = 1):
|
|
"""
|
|
Set my weights based on the output of the application of my function to its weights.
|
|
"Alter my network weights based on my evaluation"
|
|
:param iterations:
|
|
:return:
|
|
"""
|
|
for _ in range(iterations):
|
|
self.attack(self)
|
|
return self
|
|
|
|
|
|
class TaskDecorator(TaskAdditionOfN):
|
|
|
|
def __init__(self, network, **kwargs):
|
|
super(TaskDecorator, self).__init__(**kwargs)
|
|
self.network = network
|
|
self.batchsize = self.network.get_amount_of_weights()
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.network, name)
|
|
|
|
def get_samples(self, task_samples=False, self_samples=False, **kwargs):
|
|
# XOR, cannot be true at the same time
|
|
assert not all([task_samples, self_samples])
|
|
|
|
if task_samples:
|
|
return super(TaskDecorator, self).get_samples()
|
|
|
|
elif self_samples:
|
|
return self.network.get_samples()
|
|
|
|
else:
|
|
self_x, self_y = self.network.get_samples()
|
|
# Super class = Task
|
|
task_x, task_y = super(TaskDecorator, self).get_samples()
|
|
|
|
amount_of_weights = self.network.get_amount_of_weights()
|
|
random_idx = np.random.choice(np.arange(amount_of_weights), amount_of_weights//2)
|
|
|
|
x = self_x[random_idx] = task_x[random_idx]
|
|
y = self_y[random_idx] = task_y[random_idx]
|
|
|
|
return x, y
|
|
|
|
|
|
class WeightwiseNeuralNetwork(NeuralNetwork):
|
|
|
|
def __init__(self, width, depth, **kwargs):
|
|
# ToDo: Insert Docstring
|
|
super().__init__(**kwargs)
|
|
self.width: int = width
|
|
self.depth: int = depth
|
|
self.model = Sequential()
|
|
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
|
|
for _ in range(self.depth-1):
|
|
self.model.add(Dense(units=self.width, **self.keras_params))
|
|
self.model.add(Dense(units=1, **self.keras_params))
|
|
|
|
def apply(self, inputs):
|
|
# TODO: Write about it... What does it do?
|
|
return self.model.predict(inputs)
|
|
|
|
def get_samples(self, **kwargs: List[np.ndarray]):
|
|
weights = kwargs.get('weights', self.get_weights())
|
|
sample = np.asarray([
|
|
[weight, idx, *x] for idx, layer in enumerate(weights) for x, weight in np.ndenumerate(layer)
|
|
])
|
|
# normalize [layer, cell, position]
|
|
for idx in range(1, sample.shape[1]):
|
|
sample[:, idx] = sample[:, idx] / np.max(sample[:, idx])
|
|
return sample, sample[:, 0]
|
|
|
|
def apply_to_weights(self, weights) -> List[np.ndarray]:
|
|
# ToDo: Insert DocString
|
|
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
|
|
transformed_weights, _ = self.get_samples(weights=weights)
|
|
new_flat_weights = self.apply(transformed_weights)
|
|
# use the original weight shape to transform the new tensor
|
|
return self.reshape_flat_array_like(new_flat_weights, weights)
|
|
|
|
|
|
class AggregatingNeuralNetwork(NeuralNetwork):
|
|
|
|
@staticmethod
|
|
def aggregate_fft(array: np.ndarray, aggregates: int):
|
|
flat = array.flatten()
|
|
# noinspection PyTypeChecker
|
|
fft_reduction = np.fft.fftn(flat, aggregates)
|
|
return fft_reduction
|
|
|
|
@staticmethod
|
|
def aggregate_average(array, _):
|
|
return np.average(array, axis=1)
|
|
|
|
@staticmethod
|
|
def aggregate_max(array, _):
|
|
return np.max(array, axis=1)
|
|
|
|
@staticmethod
|
|
def deaggregate_identically(aggregate, amount):
|
|
return np.repeat(aggregate, amount, axis=0)
|
|
|
|
@staticmethod
|
|
def shuffle_not(weights: List[np.ndarray]):
|
|
"""
|
|
Doesn't do a thing. f(x)
|
|
|
|
:param weights: A List of Weights
|
|
:type weights: Weights
|
|
:return: The same old weights.
|
|
:rtype: Weights
|
|
"""
|
|
return weights
|
|
|
|
def shuffle_random(self, weights: List[np.ndarray]):
|
|
weights = self.shuffle_weights(weights)
|
|
return weights
|
|
|
|
def __init__(self, aggregates, width, depth, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.aggregates = aggregates
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(Dense(units=width, input_dim=self.aggregates, **self.keras_params))
|
|
for _ in range(depth-1):
|
|
self.model.add(Dense(units=width, **self.keras_params))
|
|
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
|
|
|
def get_aggregator(self):
|
|
return self.params.get('aggregator', self.aggregate_average)
|
|
|
|
def get_deaggregator(self):
|
|
return self.params.get('deaggregator', self.deaggregate_identically)
|
|
|
|
def get_shuffler(self):
|
|
return self.params.get('shuffler', self.shuffle_not)
|
|
|
|
def apply(self, inputs):
|
|
# You need to add an dimension here... "..." copies array values
|
|
return self.model.predict(inputs[None, ...])
|
|
|
|
def get_aggregated_weights(self):
|
|
return self.aggregate_weights_by(self.get_weights(), self.get_aggregator(), self.aggregates)
|
|
|
|
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
|
|
|
# build aggregations of old_weights
|
|
old_aggregations, leftovers = self.get_aggregated_weights()
|
|
|
|
# call network
|
|
new_aggregations = self.apply(old_aggregations)
|
|
collection_sizes = self.get_amount_of_weights() // self.aggregates
|
|
new_aggregations = self.deaggregate_identically(new_aggregations, collection_sizes)
|
|
# generate new weights
|
|
# only include leftovers if there are some then coonvert them to Weight on base of th old shape
|
|
complete_weights = new_aggregations if not leftovers.shape[0] else np.hstack((new_aggregations, leftovers))
|
|
new_weights = self.reshape_flat_array_like(complete_weights, old_weights)
|
|
|
|
# maybe shuffle
|
|
new_weights = self.get_shuffler()(new_weights)
|
|
return new_weights
|
|
|
|
def get_samples(self, **kwargs):
|
|
aggregations, _ = self.get_aggregated_weights()
|
|
# What did that do?
|
|
# sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
|
return aggregations, aggregations
|
|
|
|
def is_fixpoint_after_aggregation(self, degree=1, epsilon=None):
|
|
assert degree >= 1, "degree must be >= 1"
|
|
epsilon = epsilon or self.get_params().get('epsilon')
|
|
|
|
old_aggregations, _ = self.get_aggregated_weights()
|
|
new_weights = deepcopy(self.get_weights())
|
|
|
|
for _ in range(degree):
|
|
new_weights = self.apply_to_weights(new_weights)
|
|
if self.are_weights_diverged(new_weights):
|
|
return False
|
|
|
|
new_aggregations, leftovers = self.get_aggregated_weights()
|
|
|
|
# ToDo: Explain This, why are you additionally checking tolerances of aggregated weights?
|
|
biggerEpsilon = (np.abs(np.asarray(old_aggregations) - np.asarray(new_aggregations)) >= epsilon).any()
|
|
|
|
# Boolean value has to be flipped to answer the question.
|
|
return True, not biggerEpsilon
|
|
|
|
|
|
class RecurrentNeuralNetwork(NeuralNetwork):
|
|
|
|
def __init__(self, width, depth, **kwargs):
|
|
raise NotImplementedError
|
|
super(RecurrentNeuralNetwork, self).__init__()
|
|
self.features = 1
|
|
self.width = width
|
|
self.depth = depth
|
|
self.model = Sequential()
|
|
self.model.add(SimpleRNN(units=width, input_dim=self.features, return_sequences=True, **self.keras_params))
|
|
for _ in range(depth-1):
|
|
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
|
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
|
|
|
|
def apply(self, *inputs):
|
|
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
|
|
return self.model.predict(stuff)[0].flatten()
|
|
|
|
def apply_to_weights(self, old_weights):
|
|
# build list from old weights
|
|
new_weights = deepcopy(old_weights)
|
|
old_weights_list = []
|
|
for layer_id, layer in enumerate(old_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
old_weights_list += [weight]
|
|
|
|
# call network
|
|
new_weights_list = self.apply(*old_weights_list)
|
|
|
|
# write back new weights from list of rnn returns
|
|
current_weight_id = 0
|
|
for layer_id, layer in enumerate(new_weights):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
new_weight = new_weights_list[current_weight_id]
|
|
new_weights[layer_id][cell_id][weight_id] = new_weight
|
|
current_weight_id += 1
|
|
return new_weights
|
|
|
|
def compute_samples(self):
|
|
# build list from old weights
|
|
old_weights_list = []
|
|
for layer_id, layer in enumerate(self.get_weights()):
|
|
for cell_id, cell in enumerate(layer):
|
|
for weight_id, weight in enumerate(cell):
|
|
old_weights_list += [weight]
|
|
sample = np.asarray(old_weights_list)[None, ..., None]
|
|
return sample, sample
|
|
|
|
|
|
class TrainingNeuralNetworkDecorator:
|
|
|
|
def __init__(self, network):
|
|
self.network = network
|
|
self.compile_params = dict(loss='mse', optimizer='sgd')
|
|
self.model_compiled = False
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.network, name)
|
|
|
|
def with_params(self, **kwargs):
|
|
self.network.with_params(**kwargs)
|
|
return self
|
|
|
|
def with_keras_params(self, **kwargs):
|
|
self.network.with_keras_params(**kwargs)
|
|
return self
|
|
|
|
def get_compile_params(self):
|
|
return self.compile_params
|
|
|
|
def with_compile_params(self, **kwargs):
|
|
self.compile_params.update(kwargs)
|
|
return self
|
|
|
|
def compile_model(self, **kwargs):
|
|
compile_params = deepcopy(self.compile_params)
|
|
compile_params.update(kwargs)
|
|
return self.network.model.compile(**compile_params)
|
|
|
|
def compiled(self, **kwargs):
|
|
if not self.model_compiled:
|
|
self.compile_model(**kwargs)
|
|
self.model_compiled = True
|
|
return self
|
|
|
|
def train(self, batchsize=1, epoch=0):
|
|
self.compiled()
|
|
x, y = self.network.get_samples()
|
|
callbacks = []
|
|
if self.get_params().get('store_states'):
|
|
callbacks.append(SaveStateCallback(network=self, epoch=epoch))
|
|
if self.get_params().get('early_nan_stopping'):
|
|
callbacks.append(EarlyStoppingByInfNanLoss())
|
|
|
|
# 'or' does not work on empty lists
|
|
callbacks = callbacks if callbacks else None
|
|
"""
|
|
Please Note:
|
|
|
|
epochs: Integer. Number of epochs to train the model.
|
|
An epoch is an iteration over the entire `x` and `y`
|
|
data provided.
|
|
Note that in conjunction with `initial_epoch`,
|
|
`epochs` is to be understood as "final epoch".
|
|
The model is not trained for a number of iterations
|
|
given by `epochs`, but merely until the epoch
|
|
of index `epochs` is reached."""
|
|
history = self.network.model.fit(x=x, y=y, initial_epoch=epoch, epochs=epoch+1, verbose=0,
|
|
batch_size=batchsize, callbacks=callbacks)
|
|
return history.history['loss'][-1]
|
|
|
|
def learn_from(self, other_network, batchsize=1):
|
|
self.compiled()
|
|
other_network.compiled()
|
|
x, y = other_network.network.get_samples()
|
|
history = self.network.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
|
return history.history['loss'][-1]
|
|
|
|
def evaluate(self, x=None, y=None, batchsize=1):
|
|
self.compiled()
|
|
x, y = x, y if x is not None and y is not None else self.network.get_samples()
|
|
"""
|
|
Please Note:
|
|
|
|
epochs: Integer. Number of epochs to train the model.
|
|
An epoch is an iteration over the entire `x` and `y`
|
|
data provided.
|
|
Note that in conjunction with `initial_epoch`,
|
|
`epochs` is to be understood as "final epoch".
|
|
The model is not trained for a number of iterations
|
|
given by `epochs`, but merely until the epoch
|
|
of index `epochs` is reached."""
|
|
loss = self.network.model.evaluate(x=x, y=y, verbose=0, batch_size=batchsize)
|
|
return loss
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if True:
|
|
# WeightWise Neural Network
|
|
with TaskExperiment().with_params(application_steps=10, trains_per_application=1000, exp_iterations=30) as exp:
|
|
net_generator = lambda: TrainingNeuralNetworkDecorator(TaskDecorator(
|
|
WeightwiseNeuralNetwork(width=2, depth=2))
|
|
).with_keras_params(activation='linear')
|
|
exp.run_exp(net_generator, reset_model=True)
|
|
|
|
if False:
|
|
# Aggregating Neural Network
|
|
net_generator = lambda: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
|
|
with MixedFixpointExperiment() as exp:
|
|
exp.run_exp(net_generator, 10)
|
|
exp.reset_all()
|
|
|
|
if False:
|
|
# FFT Aggregation
|
|
net_generator = lambda: AggregatingNeuralNetwork(
|
|
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft)
|
|
with FixpointExperiment() as exp:
|
|
exp.run_exp(net_generator, 10)
|
|
exp.log(exp.counters)
|
|
exp.reset_model()
|
|
exp.reset_all()
|
|
|
|
if False:
|
|
# ok so this works quite realiably
|
|
run_count = 1000
|
|
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(
|
|
width=2, depth=2).with_params(epsilon=0.0001)).with_keras_params(optimizer='sgd')
|
|
with MixedFixpointExperiment() as exp:
|
|
for run_id in tqdm(range(run_count+1)):
|
|
exp.run_exp(net_generator, 1)
|
|
if run_id % 100 == 0:
|
|
exp.run_exp(net_generator, 1)
|
|
K.clear_session()
|
|
|
|
if False:
|
|
with FixpointExperiment() as exp:
|
|
run_count = 100
|
|
net = TrainingNeuralNetworkDecorator(
|
|
AggregatingNeuralNetwork(4, width=2, depth=2).with_params(epsilon=0.1e-6))
|
|
for run_id in tqdm(range(run_count+1)):
|
|
current_loss = net.compiled().train()
|
|
if run_id % 100 == 0:
|
|
net.print_weights()
|
|
old_aggs, _ = net.get_aggregated_weights()
|
|
print("old weights agg: " + str(old_aggs))
|
|
fp, new_aggs = net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
|
print("new weights agg: " + str(new_aggs))
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
print("Fixpoint after Agg? " + str(fp))
|
|
print("Loss " + str(current_loss))
|
|
print()
|
|
|
|
if False:
|
|
# this explodes in our faces completely... NAN everywhere
|
|
# TODO: Wtf is happening here?
|
|
with FixpointExperiment() as exp:
|
|
run_count = 10000
|
|
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)
|
|
).with_keras_params(optimizer='sgd', activation='linear')
|
|
for run_id in tqdm(range(run_count+1)):
|
|
current_loss = net.compiled().train()
|
|
if run_id % 500 == 0:
|
|
net.print_weights()
|
|
# print(net.apply_to_network(net))
|
|
print("Fixpoint? " + str(net.is_fixpoint()))
|
|
print("Loss " + str(current_loss))
|
|
print()
|