TaskDecorator, Tasks and Experiments

This commit is contained in:
Si11ium 2019-06-26 13:40:34 +02:00
parent a12577465c
commit 320c5c26bc
4 changed files with 288 additions and 98 deletions

View File

@ -24,7 +24,7 @@ class Experiment(ABC):
def reset_model():
K.clear_session()
def __init__(self, name=None, ident=None):
def __init__(self, name=None, ident=None, **kwargs):
self.experiment_id = f'{ident or ""}_{time.time()}'
self.experiment_name = name or 'unnamed_experiment'
self.next_iteration = 0
@ -73,11 +73,11 @@ class Experiment(ABC):
raise NotImplementedError
pass
def run_exp(self, network_generator, exp_iterations, step_limit=100, prints=False, reset_model=False):
def run_exp(self, network_generator, exp_iterations, step_limit=100, prints=False, reset_model=False, **kwargs):
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
for run_id in range(exp_iterations):
network = network_generator()
self.run_net(network, step_limit, run_id=run_id + 1)
self.run_net(network, step_limit, run_id=run_id + 1, **kwargs)
self.historical_particles[run_id] = network
if prints:
print("Fixpoint? " + str(network.is_fixpoint()))
@ -96,12 +96,13 @@ class FixpointExperiment(Experiment):
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_exp(self, network_generator, exp_iterations, logging=True, **kwargs):
def run_exp(self, network_generator, exp_iterations, logging=True, reset_model=False, **kwargs):
kwargs.update(reset_model=False)
super(FixpointExperiment, self).run_exp(network_generator, exp_iterations, **kwargs)
if logging:
self.log(self.counters)
self.reset_model()
if reset_model:
self.reset_model()
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
if len(kwargs):
@ -109,7 +110,7 @@ class FixpointExperiment(Experiment):
for i in range(step_limit):
if net.is_diverged() or net.is_fixpoint():
break
net.self_attack()
net.set_weights(net.apply_to_weights(net.get_weights()))
if run_id:
net.save_state(time=i)
self.count(net)
@ -141,30 +142,69 @@ class FixpointExperiment(Experiment):
class MixedFixpointExperiment(FixpointExperiment):
def __init__(self, **kwargs):
super(MixedFixpointExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super(MixedFixpointExperiment, self).__init__(**kwargs)
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
for i in range(step_limit):
def run_net(self, net, step_limit=100, run_id=0, trains_per_application=100, **kwargs):
assert hasattr(net, 'train'), 'This Network must be trainable, i.e. use the "TrainingNeuralNetworkDecorator"!'
for evolution_step in range(step_limit):
net.set_weights(net.apply_to_weights(net.get_weights()))
if net.is_diverged() or net.is_fixpoint():
break
net.self_attack()
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
for _ in range(kwargs.get('trains_per_application', 100)):
loss = net.train()
bar.postfix[1]["value"] = loss
epoch_num = run_id * trains_per_application * evolution_step
with tqdm(postfix={"epoch": 0, "loss": 0, None: None},
bar_format="This Epoch:{postfix[epoch]} Loss: {postfix[loss]}%|{r_bar}") as bar:
for epoch in range(epoch_num, epoch_num + trains_per_application):
loss = net.train(epoch=epoch)
bar.postfix.update(epoch=epoch, loss=loss)
bar.update()
if run_id:
if run_id and hasattr(net, 'save_sate'):
net.save_state()
self.count(net)
class TaskExperiment(MixedFixpointExperiment):
def __init__(self, **kwargs):
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super(TaskExperiment, self).__init__(**kwargs)
self.task_performance = []
self.self_performance = []
def run_exp(self, network_generator, exp_iterations, logging=True, reset_model=False, **kwargs):
kwargs.update(reset_model=False, logging=logging)
super(FixpointExperiment, self).run_exp(network_generator, exp_iterations, **kwargs)
if reset_model:
self.reset_model()
pass
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
assert hasattr(net, 'evaluate')
kwargs.update(step_limit=step_limit, run_id=run_id)
super(TaskExperiment, self).run_net(net, **kwargs)
# Get Performance without Training
selfX, selfY = net.get_samples(self_samples=True)
self.task_performance.append(net.evaluate(*net.get_samples(task_samples=True),
batchsize=net.get_amount_of_weights()))
self.self_performance.append(net.evaluate(*net.get_samples(self_samples=True),
batchsize=net.get_amount_of_weights()))
pass
class SoupExperiment(Experiment):
def __init__(self, **kwargs):
super(SoupExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super(SoupExperiment, self).__init__(**kwargs)
def run_exp(self, network_generator, exp_iterations, soup_generator=None, soup_iterations=0, prints=False):
def run_exp(self, network_generator, exp_iterations,
soup_generator=None, soup_iterations=0, prints=False, **kwargs):
for i in range(soup_iterations):
if not soup_generator:
raise ValueError('A Soup Generator needs to be given!')
soup = soup_generator()
soup.seed()
for _ in tqdm(range(exp_iterations)):
@ -181,7 +221,8 @@ class SoupExperiment(Experiment):
class IdentLearningExperiment(Experiment):
def __init__(self, **kwargs):
super(IdentLearningExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
super(IdentLearningExperiment, self).__init__(**kwargs)
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
pass

View File

@ -1,16 +1,24 @@
# Librarys
import numpy as np
from abc import abstractmethod, ABC
from typing import List, Union, Tuple
from types import FunctionType
# Functions and Operators
from operator import mul
from functools import reduce
from itertools import accumulate
from statistics import mean
from random import random as prng
# Deep learning Framework
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.callbacks import Callback
from tensorflow.python.keras.layers import SimpleRNN, Dense
# Experiment Class
from experiment import *
from task import *
# Supress warnings and info messages
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
@ -35,14 +43,6 @@ class NeuralNetwork(ABC):
This is the Base Network Class, including abstract functions that must be implemented.
"""
@staticmethod
def max(weights: List[np.ndarray]):
np.max(weights)
@staticmethod
def avg(weights: List[np.ndarray]):
return np.average(weights)
@staticmethod
def are_weights_diverged(weights: List[np.ndarray]) -> bool:
return any([any((np.isnan(x).any(), np.isinf(x).any())) for x in weights])
@ -52,7 +52,7 @@ class NeuralNetwork(ABC):
return any([((lower_bound < x) & (x < upper_bound)).any() for x in weights])
@staticmethod
def weight_amount(weights: List[np.ndarray]):
def get_weight_amount(weights: List[np.ndarray]):
return sum([x.size for x in weights])
@staticmethod
@ -72,11 +72,12 @@ class NeuralNetwork(ABC):
@staticmethod
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
# Same thing, but with an additional np call
# sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
sizes = [reduce(mul, shape) for shape in shapes]
# Split the incoming array into slices for layers
slices = [array[x: y] for x, y in zip(np.cumsum([0] + sizes), np.cumsum([0] + sizes)[1:])]
slices = [array[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
# reshape them in accordance to the given shapes
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
return weights
@ -107,6 +108,9 @@ class NeuralNetwork(ABC):
def print_weights(self, weights=None):
print(self.repr(weights or self.get_weights()))
def get_amount_of_weights(self):
return self.get_weight_amount(self.get_weights())
def get_weights(self) -> List[np.ndarray]:
return self.model.get_weights()
@ -120,31 +124,14 @@ class NeuralNetwork(ABC):
return self.model.set_weights(new_weights)
def apply_to_network(self, other_network) -> List[np.ndarray]:
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
"""
Take a networks weights and apply _this_ networks function.
:param other_network:
:return:
"""
new_weights = self.apply_to_weights(other_network.get_weights())
return new_weights
def attack(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is an attack?
other_network.set_weights(self.apply_to_network(other_network))
return self
def fuck(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is fucking?
self.set_weights(self.apply_to_network(other_network))
return self
def self_attack(self, iterations=1):
# TODO: add a dogstring, telling the user what this does, e.g. what is self attack?
for _ in range(iterations):
self.attack(self)
return self
def meet(self, other_network):
# TODO: add a dogstring, telling the user what this does, e.g. what is meeting?
new_other_network = copy.deepcopy(other_network)
return self.attack(new_other_network)
def is_diverged(self):
return self.are_weights_diverged(self.get_weights())
@ -171,11 +158,11 @@ class NeuralNetwork(ABC):
return not biggerEpsilon
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
collection_sizes = self.weight_amount(weights) // num_aggregates
collection_sizes = self.get_weight_amount(weights) // num_aggregates
flat = self.weights_to_flat_array(weights)
weights = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
array_for_aggregation = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
left_overs = flat[collection_sizes * num_aggregates:]
aggregated_weights = func(weights, num_aggregates)
aggregated_weights = func(array_for_aggregation, num_aggregates)
return aggregated_weights, left_overs
def shuffle_weights(self, weights: List[np.ndarray]):
@ -184,13 +171,19 @@ class NeuralNetwork(ABC):
return self.reshape_flat_array_like(flat, weights)
@abstractmethod
def get_samples(self):
def get_samples(self, **kwargs):
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
raise NotImplementedError
@abstractmethod
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
"""
Take weights as inputs; retunr the evaluation of _this_ network.
"Apply this function".
:param old_weights:
:return:
"""
raise NotImplementedError
@ -240,6 +233,51 @@ class ParticleDecorator:
def get_states(self):
return self.states
def attack(self, other_network):
"""
Set a networks weights based on the output of the application of my function to its weights.
"Alter a networks weights based on my evaluation"
:param other_network:
:return:
"""
other_network.set_weights(self.apply_to_network(other_network))
return self
def self_attack(self, iterations=1):
"""
Set my weights based on the output of the application of my function to its weights.
"Alter my network weights based on my evaluation"
:param other_network:
:return:
"""
for _ in range(iterations):
self.attack(self)
return self
class TaskDecorator(TaskAdditionOf2):
def __init__(self, network, **kwargs):
super(TaskDecorator, self).__init__(**kwargs)
self.network = network
self.batchsize = self.network.get_amount_of_weights()
def __getattr__(self, name):
return getattr(self.network, name)
def get_samples(self, task_samples=False, self_samples=False, **kwargs):
# XOR, cannot be true at the same time
assert not all([task_samples, self_samples])
if task_samples:
return super(TaskDecorator, self).get_samples()
elif self_samples:
return self.network.get_samples()
elif prng() >= kwargs.get('split', 0.5):
return super(TaskDecorator, self).get_samples()
else:
return self.network.get_samples()
class WeightwiseNeuralNetwork(NeuralNetwork):
@ -258,8 +296,8 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
# TODO: Write about it... What does it do?
return self.model.predict(inputs)
def get_samples(self, weights: List[np.ndarray] = None):
weights = weights or self.get_weights()
def get_samples(self, **kwargs: List[np.ndarray]):
weights = kwargs.get('weights', self.get_weights())
sample = np.asarray([
[weight, idx, *x] for idx, layer in enumerate(weights) for x, weight in np.ndenumerate(layer)
])
@ -271,7 +309,7 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
def apply_to_weights(self, weights) -> List[np.ndarray]:
# ToDo: Insert DocString
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
transformed_weights, _ = self.get_samples(weights)
transformed_weights, _ = self.get_samples(weights=weights)
new_flat_weights = self.apply(transformed_weights)
# use the original weight shape to transform the new tensor
return self.reshape_flat_array_like(new_flat_weights, weights)
@ -334,9 +372,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
def get_shuffler(self):
return self.params.get('shuffler', self.shuffle_not)
def get_amount_of_weights(self):
return self.weight_amount(self.get_weights())
def apply(self, inputs):
# You need to add an dimension here... "..." copies array values
return self.model.predict(inputs[None, ...])
@ -362,7 +397,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
new_weights = self.get_shuffler()(new_weights)
return new_weights
def get_samples(self):
def get_samples(self, **kwargs):
aggregations, _ = self.get_aggregated_weights()
# What did that do?
# sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
@ -475,13 +510,23 @@ class TrainingNeuralNetworkDecorator:
self.model_compiled = True
return self
def train(self, batchsize=1, store_states=True, epoch=0):
def train(self, batchsize=1, store_states=False, epoch=0):
self.compiled()
x, y = self.network.get_samples()
savestatecallback = [SaveStateCallback(network=self, epoch=epoch)] if store_states else None
history = self.network.model.fit(x=x, y=y, epochs=epoch+1, verbose=0,
batch_size=batchsize, callbacks=savestatecallback,
initial_epoch=epoch)
"""
Please Note:
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached."""
history = self.network.model.fit(x=x, y=y, initial_epoch=epoch, epochs=epoch+1, verbose=0,
batch_size=batchsize, callbacks=savestatecallback)
return history.history['loss'][-1]
def learn_from(self, other_network, batchsize=1):
@ -489,48 +534,59 @@ class TrainingNeuralNetworkDecorator:
other_network.compiled()
x, y = other_network.network.get_samples()
history = self.network.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
return history.history['loss'][-1]
def evaluate(self, x=None, y=None, batchsize=1):
self.compiled()
x, y = x, y if x is not None and y is not None else self.network.get_samples()
"""
Please Note:
epochs: Integer. Number of epochs to train the model.
An epoch is an iteration over the entire `x` and `y`
data provided.
Note that in conjunction with `initial_epoch`,
`epochs` is to be understood as "final epoch".
The model is not trained for a number of iterations
given by `epochs`, but merely until the epoch
of index `epochs` is reached."""
loss = self.network.model.evaluate(x=x, y=y, verbose=0, batch_size=batchsize)
return loss
if __name__ == '__main__':
if False:
if True:
# WeightWise Neural Network
net_generator = lambda: ParticleDecorator(
WeightwiseNeuralNetwork(width=2, depth=2
).with_keras_params(activation='linear'))
with FixpointExperiment() as exp:
exp.run_exp(net_generator, 10, logging=True)
net_generator = lambda: TrainingNeuralNetworkDecorator(TaskDecorator(
WeightwiseNeuralNetwork(width=2, depth=2))).with_keras_params(activation='linear')
with TaskExperiment() as exp:
exp.run_exp(net_generator, 10, trains_per_application=10)
exp.reset_all()
if True:
if False:
# Aggregating Neural Network
net_generator = lambda: ParticleDecorator(
AggregatingNeuralNetwork(aggregates=4, width=2, depth=2
).with_keras_params())
with FixpointExperiment() as exp:
exp.run_exp(net_generator, 10, logging=True)
net_generator = lambda: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
with MixedFixpointExperiment() as exp:
exp.run_exp(net_generator, 10)
exp.reset_all()
if False:
# FFT Aggregation
net_generator = lambda: ParticleDecorator(
AggregatingNeuralNetwork(
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft
).with_keras_params(activation='linear'))
net_generator = lambda: AggregatingNeuralNetwork(
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft)
with FixpointExperiment() as exp:
exp.run_exp(net_generator, 10)
exp.log(exp.counters)
exp.reset_model()
exp.reset_all()
if True:
if False:
# ok so this works quite realiably
run_count = 10000
net_generator = lambda: TrainingNeuralNetworkDecorator(
ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)
)).with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
run_count = 1000
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(
width=2, depth=2).with_params(epsilon=0.0001, steplimit=2, trains_per_application=10
)).with_keras_params(optimizer='sgd')
with MixedFixpointExperiment() as exp:
for run_id in tqdm(range(run_count+1)):
exp.run_exp(net_generator, 1)
@ -538,17 +594,18 @@ if __name__ == '__main__':
exp.run_exp(net_generator, 1)
K.clear_session()
if True:
if False:
with FixpointExperiment() as exp:
run_count = 100
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
net = TrainingNeuralNetworkDecorator(
AggregatingNeuralNetwork(4, width=2, depth=2).with_params(epsilon=0.1e-6))
for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train()
if run_id % 100 == 0:
net.print_weights()
old_aggs, _ = net.net.get_aggregated_weights()
old_aggs, _ = net.get_aggregated_weights()
print("old weights agg: " + str(old_aggs))
fp, new_aggs = net.net.is_fixpoint_after_aggregation(epsilon=0.0001)
fp, new_aggs = net.is_fixpoint_after_aggregation(epsilon=0.0001)
print("new weights agg: " + str(new_aggs))
print("Fixpoint? " + str(net.is_fixpoint()))
print("Fixpoint after Agg? " + str(fp))
@ -560,8 +617,8 @@ if __name__ == '__main__':
# TODO: Wtf is happening here?
with FixpointExperiment() as exp:
run_count = 10000
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)) \
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)
).with_keras_params(optimizer='sgd', activation='linear')
for run_id in tqdm(range(run_count+1)):
loss = net.compiled().train()
if run_id % 500 == 0:

View File

@ -1,4 +1,8 @@
import random
from operator import mul
from functools import reduce
from tensorflow.python.keras.layers import Dense, Dropout, BatchNormalization
from network import *
@ -17,6 +21,7 @@ class Soup(object):
self.params = dict(attacking_rate=0.1, learn_from_rate=0.1, train=0, learn_from_severity=1)
self.params.update(kwargs)
self.time = 0
self.is_seeded = False
def __copy__(self):
copy_ = Soup(self.size, self.generator, **self.params)
@ -43,9 +48,13 @@ class Soup(object):
return self.historical_particles.get(uid, otherwise)
def seed(self):
self.particles = []
for _ in range(self.size):
self.particles += [self.generate_particle()]
if not self.is_seeded:
self.particles = []
for _ in range(self.size):
self.particles += [self.generate_particle()]
else:
print('already seeded!')
self.is_seeded = True
return self
def evolve(self, iterations=1):
@ -59,6 +68,7 @@ class Soup(object):
particle.attack(other_particle)
description['action'] = 'attacking'
description['counterpart'] = other_particle.get_uid()
if prng() < self.params.get('learn_from_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
@ -66,6 +76,7 @@ class Soup(object):
particle.learn_from(other_particle)
description['action'] = 'learn_from'
description['counterpart'] = other_particle.get_uid()
for _ in range(self.params.get('train', 0)):
# callbacks on save_state are broken for TrainingNeuralNetwork
loss = particle.train(store_states=False)
@ -73,11 +84,13 @@ class Soup(object):
description['loss'] = loss
description['action'] = 'train_self'
description['counterpart'] = None
if self.params.get('remove_divergent') and particle.is_diverged():
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
description['action'] = 'divergent_dead'
description['counterpart'] = new_particle.get_uid()
if self.params.get('remove_zero') and particle.is_zero():
new_particle = self.generate_particle()
self.particles[particle_id] = new_particle
@ -107,6 +120,56 @@ class Soup(object):
print(particle.is_fixpoint())
class SolvingSoup(Soup):
def __init__(self, task: Task, particle_amount: int, particle_generator, depth: int=None, **kwargs):
super(SolvingSoup, self).__init__(particle_amount, particle_generator, **kwargs)
self.model = Sequential()
self.depth = depth or particle_amount - 1
self.task = task
self.network_params = dict()
self.compile_params = dict(loss='mse', optimizer='sgd')
self.compile_params.update(kwargs.get('compile_params', {}))
def with_network_params(self, **params):
self.network_params.update(params)
def seed(self):
super(SolvingSoup, self).seed()
# Static First Layer
self.model.add(Dense(self.network_params.get('first_layer_units', 10), input_shape=self.task.input_shape))
self.model.add(BatchNormalization())
for layer_num in range(self.depth):
# ToDo !!!!!!!!!!
self.model.add(Dense())
self.model.add(Dropout(rate=self.params.get('sparsity_rate', 0.1)))
has_to_be_zero =
if has_to_be_zero:
raise ValueError(f'This Combination does not Work!, There are still {has_to_be_zero} unnassigned Weights!')
self.model.add(Dense(left_over_units))
self.model.add(Dense(self.task.output_shape))
pass
def compile_model(self, **kwargs):
compile_params = copy.deepcopy(self.compile_params)
compile_params.update(kwargs)
return self.model.compile(**compile_params)
def get_total_weight_amount(self):
if self.is_seeded:
return sum([x.get_amount_of_weights for x in self.particles])
def predict(self, x):
return self.model.predict(x)
if __name__ == '__main__':
if True:
with SoupExperiment(name='soup') as exp:
@ -136,3 +199,4 @@ if __name__ == '__main__':
# .with_keras_params(activation='linear')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()

28
code/task.py Normal file
View File

@ -0,0 +1,28 @@
from abc import ABC, abstractmethod
import numpy as np
from typing import Tuple, List, Union
class Task(ABC):
def __init__(self, input_shape, output_shape, **kwargs):
self.input_shape = input_shape
self.output_shape = output_shape
self.batchsize = kwargs.get('batchsize', 100)
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
raise NotImplementedError
class TaskAdditionOf2(Task):
def __init__(self, **kwargs):
super(TaskAdditionOf2, self).__init__(input_shape=(4,), output_shape=(1, ), **kwargs)
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
x = np.zeros((self.batchsize, *self.input_shape))
x[:, :2] = np.random.standard_normal((self.batchsize, 2)) * 0.5
y = np.zeros_like(x)
y[:, -1] = np.sum(x, axis=1)
return x, y