TaskDecorator, Tasks and Experiments
This commit is contained in:
parent
a12577465c
commit
320c5c26bc
@ -24,7 +24,7 @@ class Experiment(ABC):
|
||||
def reset_model():
|
||||
K.clear_session()
|
||||
|
||||
def __init__(self, name=None, ident=None):
|
||||
def __init__(self, name=None, ident=None, **kwargs):
|
||||
self.experiment_id = f'{ident or ""}_{time.time()}'
|
||||
self.experiment_name = name or 'unnamed_experiment'
|
||||
self.next_iteration = 0
|
||||
@ -73,11 +73,11 @@ class Experiment(ABC):
|
||||
raise NotImplementedError
|
||||
pass
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, step_limit=100, prints=False, reset_model=False):
|
||||
def run_exp(self, network_generator, exp_iterations, step_limit=100, prints=False, reset_model=False, **kwargs):
|
||||
# INFO Run_ID needs to be more than 0, so that exp stores the trajectories!
|
||||
for run_id in range(exp_iterations):
|
||||
network = network_generator()
|
||||
self.run_net(network, step_limit, run_id=run_id + 1)
|
||||
self.run_net(network, step_limit, run_id=run_id + 1, **kwargs)
|
||||
self.historical_particles[run_id] = network
|
||||
if prints:
|
||||
print("Fixpoint? " + str(network.is_fixpoint()))
|
||||
@ -96,12 +96,13 @@ class FixpointExperiment(Experiment):
|
||||
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
|
||||
self.interesting_fixpoints = []
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, logging=True, **kwargs):
|
||||
def run_exp(self, network_generator, exp_iterations, logging=True, reset_model=False, **kwargs):
|
||||
kwargs.update(reset_model=False)
|
||||
super(FixpointExperiment, self).run_exp(network_generator, exp_iterations, **kwargs)
|
||||
if logging:
|
||||
self.log(self.counters)
|
||||
self.reset_model()
|
||||
if reset_model:
|
||||
self.reset_model()
|
||||
|
||||
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
|
||||
if len(kwargs):
|
||||
@ -109,7 +110,7 @@ class FixpointExperiment(Experiment):
|
||||
for i in range(step_limit):
|
||||
if net.is_diverged() or net.is_fixpoint():
|
||||
break
|
||||
net.self_attack()
|
||||
net.set_weights(net.apply_to_weights(net.get_weights()))
|
||||
if run_id:
|
||||
net.save_state(time=i)
|
||||
self.count(net)
|
||||
@ -141,30 +142,69 @@ class FixpointExperiment(Experiment):
|
||||
class MixedFixpointExperiment(FixpointExperiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(MixedFixpointExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(MixedFixpointExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
|
||||
for i in range(step_limit):
|
||||
def run_net(self, net, step_limit=100, run_id=0, trains_per_application=100, **kwargs):
|
||||
assert hasattr(net, 'train'), 'This Network must be trainable, i.e. use the "TrainingNeuralNetworkDecorator"!'
|
||||
|
||||
for evolution_step in range(step_limit):
|
||||
net.set_weights(net.apply_to_weights(net.get_weights()))
|
||||
if net.is_diverged() or net.is_fixpoint():
|
||||
break
|
||||
net.self_attack()
|
||||
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
|
||||
for _ in range(kwargs.get('trains_per_application', 100)):
|
||||
loss = net.train()
|
||||
bar.postfix[1]["value"] = loss
|
||||
epoch_num = run_id * trains_per_application * evolution_step
|
||||
with tqdm(postfix={"epoch": 0, "loss": 0, None: None},
|
||||
bar_format="This Epoch:{postfix[epoch]} Loss: {postfix[loss]}%|{r_bar}") as bar:
|
||||
for epoch in range(epoch_num, epoch_num + trains_per_application):
|
||||
loss = net.train(epoch=epoch)
|
||||
bar.postfix.update(epoch=epoch, loss=loss)
|
||||
bar.update()
|
||||
if run_id:
|
||||
if run_id and hasattr(net, 'save_sate'):
|
||||
net.save_state()
|
||||
self.count(net)
|
||||
|
||||
|
||||
class TaskExperiment(MixedFixpointExperiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(TaskExperiment, self).__init__(**kwargs)
|
||||
self.task_performance = []
|
||||
self.self_performance = []
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, logging=True, reset_model=False, **kwargs):
|
||||
kwargs.update(reset_model=False, logging=logging)
|
||||
super(FixpointExperiment, self).run_exp(network_generator, exp_iterations, **kwargs)
|
||||
if reset_model:
|
||||
self.reset_model()
|
||||
pass
|
||||
|
||||
def run_net(self, net, step_limit=100, run_id=0, **kwargs):
|
||||
assert hasattr(net, 'evaluate')
|
||||
kwargs.update(step_limit=step_limit, run_id=run_id)
|
||||
super(TaskExperiment, self).run_net(net, **kwargs)
|
||||
|
||||
# Get Performance without Training
|
||||
selfX, selfY = net.get_samples(self_samples=True)
|
||||
|
||||
self.task_performance.append(net.evaluate(*net.get_samples(task_samples=True),
|
||||
batchsize=net.get_amount_of_weights()))
|
||||
self.self_performance.append(net.evaluate(*net.get_samples(self_samples=True),
|
||||
batchsize=net.get_amount_of_weights()))
|
||||
pass
|
||||
|
||||
|
||||
class SoupExperiment(Experiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(SoupExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(SoupExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_exp(self, network_generator, exp_iterations, soup_generator=None, soup_iterations=0, prints=False):
|
||||
def run_exp(self, network_generator, exp_iterations,
|
||||
soup_generator=None, soup_iterations=0, prints=False, **kwargs):
|
||||
for i in range(soup_iterations):
|
||||
if not soup_generator:
|
||||
raise ValueError('A Soup Generator needs to be given!')
|
||||
soup = soup_generator()
|
||||
soup.seed()
|
||||
for _ in tqdm(range(exp_iterations)):
|
||||
@ -181,7 +221,8 @@ class SoupExperiment(Experiment):
|
||||
class IdentLearningExperiment(Experiment):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(IdentLearningExperiment, self).__init__(name=kwargs.get('name', self.__class__.__name__))
|
||||
kwargs['name'] = self.__class__.__name__ if 'name' not in kwargs else kwargs['name']
|
||||
super(IdentLearningExperiment, self).__init__(**kwargs)
|
||||
|
||||
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0, **kwargs):
|
||||
pass
|
||||
|
211
code/network.py
211
code/network.py
@ -1,16 +1,24 @@
|
||||
# Librarys
|
||||
import numpy as np
|
||||
from abc import abstractmethod, ABC
|
||||
from typing import List, Union, Tuple
|
||||
from types import FunctionType
|
||||
|
||||
# Functions and Operators
|
||||
from operator import mul
|
||||
from functools import reduce
|
||||
from itertools import accumulate
|
||||
from statistics import mean
|
||||
from random import random as prng
|
||||
|
||||
# Deep learning Framework
|
||||
from tensorflow.python.keras.models import Sequential
|
||||
from tensorflow.python.keras.callbacks import Callback
|
||||
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
||||
|
||||
# Experiment Class
|
||||
from experiment import *
|
||||
from task import *
|
||||
|
||||
# Supress warnings and info messages
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
@ -35,14 +43,6 @@ class NeuralNetwork(ABC):
|
||||
This is the Base Network Class, including abstract functions that must be implemented.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def max(weights: List[np.ndarray]):
|
||||
np.max(weights)
|
||||
|
||||
@staticmethod
|
||||
def avg(weights: List[np.ndarray]):
|
||||
return np.average(weights)
|
||||
|
||||
@staticmethod
|
||||
def are_weights_diverged(weights: List[np.ndarray]) -> bool:
|
||||
return any([any((np.isnan(x).any(), np.isinf(x).any())) for x in weights])
|
||||
@ -52,7 +52,7 @@ class NeuralNetwork(ABC):
|
||||
return any([((lower_bound < x) & (x < upper_bound)).any() for x in weights])
|
||||
|
||||
@staticmethod
|
||||
def weight_amount(weights: List[np.ndarray]):
|
||||
def get_weight_amount(weights: List[np.ndarray]):
|
||||
return sum([x.size for x in weights])
|
||||
|
||||
@staticmethod
|
||||
@ -72,11 +72,12 @@ class NeuralNetwork(ABC):
|
||||
|
||||
@staticmethod
|
||||
def reshape_flat_array(array, shapes: List[Tuple[int]]) -> List[np.ndarray]:
|
||||
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
# Same thing, but with an additional np call
|
||||
# sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
|
||||
sizes = [reduce(mul, shape) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(np.cumsum([0] + sizes), np.cumsum([0] + sizes)[1:])]
|
||||
slices = [array[x: y] for x, y in zip(accumulate([0] + sizes), accumulate(sizes))]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
@ -107,6 +108,9 @@ class NeuralNetwork(ABC):
|
||||
def print_weights(self, weights=None):
|
||||
print(self.repr(weights or self.get_weights()))
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
return self.get_weight_amount(self.get_weights())
|
||||
|
||||
def get_weights(self) -> List[np.ndarray]:
|
||||
return self.model.get_weights()
|
||||
|
||||
@ -120,31 +124,14 @@ class NeuralNetwork(ABC):
|
||||
return self.model.set_weights(new_weights)
|
||||
|
||||
def apply_to_network(self, other_network) -> List[np.ndarray]:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
"""
|
||||
Take a networks weights and apply _this_ networks function.
|
||||
:param other_network:
|
||||
:return:
|
||||
"""
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
return new_weights
|
||||
|
||||
def attack(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is an attack?
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def fuck(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is fucking?
|
||||
self.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations=1):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is self attack?
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
def meet(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is meeting?
|
||||
new_other_network = copy.deepcopy(other_network)
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def is_diverged(self):
|
||||
return self.are_weights_diverged(self.get_weights())
|
||||
|
||||
@ -171,11 +158,11 @@ class NeuralNetwork(ABC):
|
||||
return not biggerEpsilon
|
||||
|
||||
def aggregate_weights_by(self, weights: List[np.ndarray], func: FunctionType, num_aggregates: int):
|
||||
collection_sizes = self.weight_amount(weights) // num_aggregates
|
||||
collection_sizes = self.get_weight_amount(weights) // num_aggregates
|
||||
flat = self.weights_to_flat_array(weights)
|
||||
weights = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
array_for_aggregation = flat[:collection_sizes * num_aggregates].reshape((num_aggregates, -1))
|
||||
left_overs = flat[collection_sizes * num_aggregates:]
|
||||
aggregated_weights = func(weights, num_aggregates)
|
||||
aggregated_weights = func(array_for_aggregation, num_aggregates)
|
||||
return aggregated_weights, left_overs
|
||||
|
||||
def shuffle_weights(self, weights: List[np.ndarray]):
|
||||
@ -184,13 +171,19 @@ class NeuralNetwork(ABC):
|
||||
return self.reshape_flat_array_like(flat, weights)
|
||||
|
||||
@abstractmethod
|
||||
def get_samples(self):
|
||||
def get_samples(self, **kwargs):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is a sample?
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> List[np.ndarray]:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
"""
|
||||
Take weights as inputs; retunr the evaluation of _this_ network.
|
||||
"Apply this function".
|
||||
|
||||
:param old_weights:
|
||||
:return:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@ -240,6 +233,51 @@ class ParticleDecorator:
|
||||
def get_states(self):
|
||||
return self.states
|
||||
|
||||
def attack(self, other_network):
|
||||
"""
|
||||
Set a networks weights based on the output of the application of my function to its weights.
|
||||
"Alter a networks weights based on my evaluation"
|
||||
:param other_network:
|
||||
:return:
|
||||
"""
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations=1):
|
||||
"""
|
||||
Set my weights based on the output of the application of my function to its weights.
|
||||
"Alter my network weights based on my evaluation"
|
||||
:param other_network:
|
||||
:return:
|
||||
"""
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
|
||||
class TaskDecorator(TaskAdditionOf2):
|
||||
|
||||
def __init__(self, network, **kwargs):
|
||||
super(TaskDecorator, self).__init__(**kwargs)
|
||||
self.network = network
|
||||
self.batchsize = self.network.get_amount_of_weights()
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.network, name)
|
||||
|
||||
def get_samples(self, task_samples=False, self_samples=False, **kwargs):
|
||||
# XOR, cannot be true at the same time
|
||||
assert not all([task_samples, self_samples])
|
||||
|
||||
if task_samples:
|
||||
return super(TaskDecorator, self).get_samples()
|
||||
elif self_samples:
|
||||
return self.network.get_samples()
|
||||
elif prng() >= kwargs.get('split', 0.5):
|
||||
return super(TaskDecorator, self).get_samples()
|
||||
else:
|
||||
return self.network.get_samples()
|
||||
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@ -258,8 +296,8 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
# TODO: Write about it... What does it do?
|
||||
return self.model.predict(inputs)
|
||||
|
||||
def get_samples(self, weights: List[np.ndarray] = None):
|
||||
weights = weights or self.get_weights()
|
||||
def get_samples(self, **kwargs: List[np.ndarray]):
|
||||
weights = kwargs.get('weights', self.get_weights())
|
||||
sample = np.asarray([
|
||||
[weight, idx, *x] for idx, layer in enumerate(weights) for x, weight in np.ndenumerate(layer)
|
||||
])
|
||||
@ -271,7 +309,7 @@ class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
def apply_to_weights(self, weights) -> List[np.ndarray]:
|
||||
# ToDo: Insert DocString
|
||||
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
|
||||
transformed_weights, _ = self.get_samples(weights)
|
||||
transformed_weights, _ = self.get_samples(weights=weights)
|
||||
new_flat_weights = self.apply(transformed_weights)
|
||||
# use the original weight shape to transform the new tensor
|
||||
return self.reshape_flat_array_like(new_flat_weights, weights)
|
||||
@ -334,9 +372,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
def get_shuffler(self):
|
||||
return self.params.get('shuffler', self.shuffle_not)
|
||||
|
||||
def get_amount_of_weights(self):
|
||||
return self.weight_amount(self.get_weights())
|
||||
|
||||
def apply(self, inputs):
|
||||
# You need to add an dimension here... "..." copies array values
|
||||
return self.model.predict(inputs[None, ...])
|
||||
@ -362,7 +397,7 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_weights = self.get_shuffler()(new_weights)
|
||||
return new_weights
|
||||
|
||||
def get_samples(self):
|
||||
def get_samples(self, **kwargs):
|
||||
aggregations, _ = self.get_aggregated_weights()
|
||||
# What did that do?
|
||||
# sample = np.transpose(np.array([[aggregations[i]] for i in range(self.aggregates)]))
|
||||
@ -475,13 +510,23 @@ class TrainingNeuralNetworkDecorator:
|
||||
self.model_compiled = True
|
||||
return self
|
||||
|
||||
def train(self, batchsize=1, store_states=True, epoch=0):
|
||||
def train(self, batchsize=1, store_states=False, epoch=0):
|
||||
self.compiled()
|
||||
x, y = self.network.get_samples()
|
||||
savestatecallback = [SaveStateCallback(network=self, epoch=epoch)] if store_states else None
|
||||
history = self.network.model.fit(x=x, y=y, epochs=epoch+1, verbose=0,
|
||||
batch_size=batchsize, callbacks=savestatecallback,
|
||||
initial_epoch=epoch)
|
||||
"""
|
||||
Please Note:
|
||||
|
||||
epochs: Integer. Number of epochs to train the model.
|
||||
An epoch is an iteration over the entire `x` and `y`
|
||||
data provided.
|
||||
Note that in conjunction with `initial_epoch`,
|
||||
`epochs` is to be understood as "final epoch".
|
||||
The model is not trained for a number of iterations
|
||||
given by `epochs`, but merely until the epoch
|
||||
of index `epochs` is reached."""
|
||||
history = self.network.model.fit(x=x, y=y, initial_epoch=epoch, epochs=epoch+1, verbose=0,
|
||||
batch_size=batchsize, callbacks=savestatecallback)
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def learn_from(self, other_network, batchsize=1):
|
||||
@ -489,48 +534,59 @@ class TrainingNeuralNetworkDecorator:
|
||||
other_network.compiled()
|
||||
x, y = other_network.network.get_samples()
|
||||
history = self.network.model.fit(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
|
||||
return history.history['loss'][-1]
|
||||
|
||||
def evaluate(self, x=None, y=None, batchsize=1):
|
||||
self.compiled()
|
||||
x, y = x, y if x is not None and y is not None else self.network.get_samples()
|
||||
"""
|
||||
Please Note:
|
||||
|
||||
epochs: Integer. Number of epochs to train the model.
|
||||
An epoch is an iteration over the entire `x` and `y`
|
||||
data provided.
|
||||
Note that in conjunction with `initial_epoch`,
|
||||
`epochs` is to be understood as "final epoch".
|
||||
The model is not trained for a number of iterations
|
||||
given by `epochs`, but merely until the epoch
|
||||
of index `epochs` is reached."""
|
||||
loss = self.network.model.evaluate(x=x, y=y, verbose=0, batch_size=batchsize)
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if False:
|
||||
if True:
|
||||
# WeightWise Neural Network
|
||||
net_generator = lambda: ParticleDecorator(
|
||||
WeightwiseNeuralNetwork(width=2, depth=2
|
||||
).with_keras_params(activation='linear'))
|
||||
with FixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10, logging=True)
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(TaskDecorator(
|
||||
WeightwiseNeuralNetwork(width=2, depth=2))).with_keras_params(activation='linear')
|
||||
with TaskExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10, trains_per_application=10)
|
||||
exp.reset_all()
|
||||
|
||||
if True:
|
||||
if False:
|
||||
# Aggregating Neural Network
|
||||
net_generator = lambda: ParticleDecorator(
|
||||
AggregatingNeuralNetwork(aggregates=4, width=2, depth=2
|
||||
).with_keras_params())
|
||||
with FixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10, logging=True)
|
||||
net_generator = lambda: AggregatingNeuralNetwork(aggregates=4, width=2, depth=2)
|
||||
with MixedFixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10)
|
||||
exp.reset_all()
|
||||
|
||||
if False:
|
||||
# FFT Aggregation
|
||||
net_generator = lambda: ParticleDecorator(
|
||||
AggregatingNeuralNetwork(
|
||||
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft
|
||||
).with_keras_params(activation='linear'))
|
||||
net_generator = lambda: AggregatingNeuralNetwork(
|
||||
aggregates=4, width=2, depth=2, aggregator=AggregatingNeuralNetwork.aggregate_fft)
|
||||
with FixpointExperiment() as exp:
|
||||
exp.run_exp(net_generator, 10)
|
||||
exp.log(exp.counters)
|
||||
exp.reset_model()
|
||||
exp.reset_all()
|
||||
|
||||
if True:
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
run_count = 10000
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(
|
||||
ParticleDecorator(WeightwiseNeuralNetwork(width=2, depth=2)
|
||||
)).with_params(epsilon=0.0001).with_keras_params(optimizer='sgd')
|
||||
run_count = 1000
|
||||
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(
|
||||
width=2, depth=2).with_params(epsilon=0.0001, steplimit=2, trains_per_application=10
|
||||
)).with_keras_params(optimizer='sgd')
|
||||
with MixedFixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
exp.run_exp(net_generator, 1)
|
||||
@ -538,17 +594,18 @@ if __name__ == '__main__':
|
||||
exp.run_exp(net_generator, 1)
|
||||
K.clear_session()
|
||||
|
||||
if True:
|
||||
if False:
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 100
|
||||
net = TrainingNeuralNetworkDecorator(AggregatingNeuralNetwork(4, width=2, depth=2)).with_params(epsilon=0.1e-6)
|
||||
net = TrainingNeuralNetworkDecorator(
|
||||
AggregatingNeuralNetwork(4, width=2, depth=2).with_params(epsilon=0.1e-6))
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
if run_id % 100 == 0:
|
||||
net.print_weights()
|
||||
old_aggs, _ = net.net.get_aggregated_weights()
|
||||
old_aggs, _ = net.get_aggregated_weights()
|
||||
print("old weights agg: " + str(old_aggs))
|
||||
fp, new_aggs = net.net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
||||
fp, new_aggs = net.is_fixpoint_after_aggregation(epsilon=0.0001)
|
||||
print("new weights agg: " + str(new_aggs))
|
||||
print("Fixpoint? " + str(net.is_fixpoint()))
|
||||
print("Fixpoint after Agg? " + str(fp))
|
||||
@ -560,8 +617,8 @@ if __name__ == '__main__':
|
||||
# TODO: Wtf is happening here?
|
||||
with FixpointExperiment() as exp:
|
||||
run_count = 10000
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)) \
|
||||
.with_params(epsilon=0.1e-2).with_keras_params(optimizer='sgd', activation='linear')
|
||||
net = TrainingNeuralNetworkDecorator(RecurrentNeuralNetwork(width=2, depth=2)
|
||||
).with_keras_params(optimizer='sgd', activation='linear')
|
||||
for run_id in tqdm(range(run_count+1)):
|
||||
loss = net.compiled().train()
|
||||
if run_id % 500 == 0:
|
||||
|
70
code/soup.py
70
code/soup.py
@ -1,4 +1,8 @@
|
||||
import random
|
||||
from operator import mul
|
||||
from functools import reduce
|
||||
|
||||
from tensorflow.python.keras.layers import Dense, Dropout, BatchNormalization
|
||||
|
||||
from network import *
|
||||
|
||||
@ -17,6 +21,7 @@ class Soup(object):
|
||||
self.params = dict(attacking_rate=0.1, learn_from_rate=0.1, train=0, learn_from_severity=1)
|
||||
self.params.update(kwargs)
|
||||
self.time = 0
|
||||
self.is_seeded = False
|
||||
|
||||
def __copy__(self):
|
||||
copy_ = Soup(self.size, self.generator, **self.params)
|
||||
@ -43,9 +48,13 @@ class Soup(object):
|
||||
return self.historical_particles.get(uid, otherwise)
|
||||
|
||||
def seed(self):
|
||||
self.particles = []
|
||||
for _ in range(self.size):
|
||||
self.particles += [self.generate_particle()]
|
||||
if not self.is_seeded:
|
||||
self.particles = []
|
||||
for _ in range(self.size):
|
||||
self.particles += [self.generate_particle()]
|
||||
else:
|
||||
print('already seeded!')
|
||||
self.is_seeded = True
|
||||
return self
|
||||
|
||||
def evolve(self, iterations=1):
|
||||
@ -59,6 +68,7 @@ class Soup(object):
|
||||
particle.attack(other_particle)
|
||||
description['action'] = 'attacking'
|
||||
description['counterpart'] = other_particle.get_uid()
|
||||
|
||||
if prng() < self.params.get('learn_from_rate'):
|
||||
other_particle_id = int(prng() * len(self.particles))
|
||||
other_particle = self.particles[other_particle_id]
|
||||
@ -66,6 +76,7 @@ class Soup(object):
|
||||
particle.learn_from(other_particle)
|
||||
description['action'] = 'learn_from'
|
||||
description['counterpart'] = other_particle.get_uid()
|
||||
|
||||
for _ in range(self.params.get('train', 0)):
|
||||
# callbacks on save_state are broken for TrainingNeuralNetwork
|
||||
loss = particle.train(store_states=False)
|
||||
@ -73,11 +84,13 @@ class Soup(object):
|
||||
description['loss'] = loss
|
||||
description['action'] = 'train_self'
|
||||
description['counterpart'] = None
|
||||
|
||||
if self.params.get('remove_divergent') and particle.is_diverged():
|
||||
new_particle = self.generate_particle()
|
||||
self.particles[particle_id] = new_particle
|
||||
description['action'] = 'divergent_dead'
|
||||
description['counterpart'] = new_particle.get_uid()
|
||||
|
||||
if self.params.get('remove_zero') and particle.is_zero():
|
||||
new_particle = self.generate_particle()
|
||||
self.particles[particle_id] = new_particle
|
||||
@ -107,6 +120,56 @@ class Soup(object):
|
||||
print(particle.is_fixpoint())
|
||||
|
||||
|
||||
class SolvingSoup(Soup):
|
||||
|
||||
def __init__(self, task: Task, particle_amount: int, particle_generator, depth: int=None, **kwargs):
|
||||
super(SolvingSoup, self).__init__(particle_amount, particle_generator, **kwargs)
|
||||
self.model = Sequential()
|
||||
self.depth = depth or particle_amount - 1
|
||||
self.task = task
|
||||
|
||||
self.network_params = dict()
|
||||
self.compile_params = dict(loss='mse', optimizer='sgd')
|
||||
self.compile_params.update(kwargs.get('compile_params', {}))
|
||||
|
||||
def with_network_params(self, **params):
|
||||
self.network_params.update(params)
|
||||
|
||||
def seed(self):
|
||||
super(SolvingSoup, self).seed()
|
||||
|
||||
# Static First Layer
|
||||
self.model.add(Dense(self.network_params.get('first_layer_units', 10), input_shape=self.task.input_shape))
|
||||
self.model.add(BatchNormalization())
|
||||
|
||||
for layer_num in range(self.depth):
|
||||
# ToDo !!!!!!!!!!
|
||||
self.model.add(Dense())
|
||||
self.model.add(Dropout(rate=self.params.get('sparsity_rate', 0.1)))
|
||||
|
||||
has_to_be_zero =
|
||||
|
||||
if has_to_be_zero:
|
||||
raise ValueError(f'This Combination does not Work!, There are still {has_to_be_zero} unnassigned Weights!')
|
||||
self.model.add(Dense(left_over_units))
|
||||
self.model.add(Dense(self.task.output_shape))
|
||||
pass
|
||||
|
||||
def compile_model(self, **kwargs):
|
||||
compile_params = copy.deepcopy(self.compile_params)
|
||||
compile_params.update(kwargs)
|
||||
return self.model.compile(**compile_params)
|
||||
|
||||
def get_total_weight_amount(self):
|
||||
if self.is_seeded:
|
||||
return sum([x.get_amount_of_weights for x in self.particles])
|
||||
|
||||
def predict(self, x):
|
||||
return self.model.predict(x)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if True:
|
||||
with SoupExperiment(name='soup') as exp:
|
||||
@ -136,3 +199,4 @@ if __name__ == '__main__':
|
||||
# .with_keras_params(activation='linear')\
|
||||
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
|
||||
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
|
||||
|
||||
|
28
code/task.py
Normal file
28
code/task.py
Normal file
@ -0,0 +1,28 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
|
||||
from typing import Tuple, List, Union
|
||||
|
||||
|
||||
class Task(ABC):
|
||||
|
||||
def __init__(self, input_shape, output_shape, **kwargs):
|
||||
self.input_shape = input_shape
|
||||
self.output_shape = output_shape
|
||||
self.batchsize = kwargs.get('batchsize', 100)
|
||||
|
||||
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TaskAdditionOf2(Task):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(TaskAdditionOf2, self).__init__(input_shape=(4,), output_shape=(1, ), **kwargs)
|
||||
|
||||
def get_samples(self) -> Tuple[np.ndarray, np.ndarray]:
|
||||
x = np.zeros((self.batchsize, *self.input_shape))
|
||||
x[:, :2] = np.random.standard_normal((self.batchsize, 2)) * 0.5
|
||||
y = np.zeros_like(x)
|
||||
y[:, -1] = np.sum(x, axis=1)
|
||||
return x, y
|
Loading…
x
Reference in New Issue
Block a user