small fixes new parameters
This commit is contained in:
@@ -45,8 +45,8 @@ from functionalities_test import test_for_fixpoints
|
|||||||
WORKER = 10 if not debug else 2
|
WORKER = 10 if not debug else 2
|
||||||
debug = False
|
debug = False
|
||||||
BATCHSIZE = 500 if not debug else 50
|
BATCHSIZE = 500 if not debug else 50
|
||||||
EPOCH = 50
|
EPOCH = 100
|
||||||
VALIDATION_FRQ = 3 if not debug else 1
|
VALIDATION_FRQ = 4 if not debug else 1
|
||||||
SELF_TRAIN_FRQ = 1 if not debug else 1
|
SELF_TRAIN_FRQ = 1 if not debug else 1
|
||||||
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
@@ -56,6 +56,9 @@ if debug:
|
|||||||
|
|
||||||
class ToFloat:
|
class ToFloat:
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
return x.to(torch.float32)
|
return x.to(torch.float32)
|
||||||
|
|
||||||
@@ -194,7 +197,7 @@ def plot_training_result(path_to_dataframe):
|
|||||||
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
||||||
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
|
||||||
# noinspection PyProtectedMember
|
# noinspection PyProtectedMember
|
||||||
particles = [y for x in m._meta_layer_list for y in x.particles]
|
particles = list(m.particles)
|
||||||
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
|
||||||
|
|
||||||
for prtcl in particles:
|
for prtcl in particles:
|
||||||
@@ -210,10 +213,16 @@ def plot_network_connectivity_by_fixtype(path_to_trained_model):
|
|||||||
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
|
||||||
plt.clf()
|
plt.clf()
|
||||||
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
|
||||||
legend=False, estimator=None,
|
legend=False, estimator=None, lw=1)
|
||||||
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
|
_ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0)
|
||||||
ax.set_title(fixtype)
|
ax.set_title(fixtype)
|
||||||
plt.show()
|
lines = ax.get_lines()
|
||||||
|
for line in lines:
|
||||||
|
line.set_color(sns.color_palette()[n])
|
||||||
|
if debug:
|
||||||
|
plt.show()
|
||||||
|
else:
|
||||||
|
plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300)
|
||||||
print('plottet')
|
print('plottet')
|
||||||
|
|
||||||
|
|
||||||
@@ -234,7 +243,7 @@ def run_particle_dropout_test(run_path):
|
|||||||
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
tqdm.write(f'Zero_ident diff = {acc_diff}')
|
||||||
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
|
||||||
|
|
||||||
diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
diff_df.to_csv(diff_store_path, mode='a', header=not diff_store_path.exists(), index=False)
|
||||||
return diff_store_path
|
return diff_store_path
|
||||||
|
|
||||||
|
|
||||||
@@ -246,18 +255,18 @@ def plot_dropout_stacked_barplot(path_to_diff_df):
|
|||||||
plt.clf()
|
plt.clf()
|
||||||
fig, ax = plt.subplots(ncols=2)
|
fig, ax = plt.subplots(ncols=2)
|
||||||
colors = sns.color_palette()[:diff_df.shape[0]]
|
colors = sns.color_palette()[:diff_df.shape[0]]
|
||||||
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
|
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', ax=ax[0], palette=colors)
|
||||||
# noinspection PyUnboundLocalVariable
|
# noinspection PyUnboundLocalVariable
|
||||||
for idx, patch in enumerate(barplot.patches):
|
#for idx, patch in enumerate(barplot.patches):
|
||||||
if idx != 0:
|
# if idx != 0:
|
||||||
# we recenter the bar
|
# # we recenter the bar
|
||||||
patch.set_x(patch.get_x() + idx * 0.035)
|
# patch.set_x(patch.get_x() + idx * 0.035)
|
||||||
|
|
||||||
ax[0].set_title('Accuracy after particle dropout')
|
ax[0].set_title('Accuracy after particle dropout')
|
||||||
ax[0].set_xlabel('Accuracy')
|
ax[0].set_xlabel('Particle Type')
|
||||||
|
|
||||||
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
|
||||||
ax[1].set_title('Particle Count for ')
|
ax[1].set_title('Particle Count')
|
||||||
|
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
if debug:
|
if debug:
|
||||||
@@ -278,196 +287,202 @@ def flat_for_store(parameters):
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
self_train = True
|
self_train = True
|
||||||
training = True
|
training = False
|
||||||
train_to_id_first = False
|
train_to_id_first = True
|
||||||
train_to_task_first = False
|
train_to_task_first = False
|
||||||
train_to_task_first_sequential = True
|
sequential_task_train = True
|
||||||
force_st_for_n_from_last_epochs = 5
|
force_st_for_n_from_last_epochs = 5
|
||||||
|
n_st_per_batch = 3
|
||||||
|
activation = None # nn.ReLU()
|
||||||
|
|
||||||
use_sparse_network = False
|
use_sparse_network = True
|
||||||
|
|
||||||
tsk_threshold = 0.855
|
for weight_hidden_size in [3, 4, 5, 6]:
|
||||||
self_train_alpha = 1
|
|
||||||
batch_train_beta = 1
|
|
||||||
weight_hidden_size = 3
|
|
||||||
residual_skip = True
|
|
||||||
n_seeds = 5
|
|
||||||
|
|
||||||
data_path = Path('data')
|
tsk_threshold = 0.85
|
||||||
data_path.mkdir(exist_ok=True, parents=True)
|
weight_hidden_size = weight_hidden_size
|
||||||
assert not (train_to_task_first and train_to_id_first)
|
residual_skip = True
|
||||||
|
n_seeds = 3
|
||||||
|
|
||||||
st_str = f'{"" if self_train else "no_"}st'
|
data_path = Path('data')
|
||||||
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
|
data_path.mkdir(exist_ok=True, parents=True)
|
||||||
res_str = f'{"" if residual_skip else "_no_res"}'
|
assert not (train_to_task_first and train_to_id_first)
|
||||||
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
|
||||||
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
|
||||||
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
|
||||||
sprs_str = '_sprs' if use_sparse_network else ''
|
|
||||||
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
|
||||||
force_st_for_n_from_last_epochs and train_to_task_first_sequential and train_to_task_first \
|
|
||||||
else ""
|
|
||||||
config_str = f'{a_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
|
||||||
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
|
|
||||||
|
|
||||||
for seed in range(n_seeds):
|
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
|
||||||
seed_path = exp_path / str(seed)
|
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
|
||||||
|
res_str = f'{"" if residual_skip else "_no_res"}'
|
||||||
|
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
|
||||||
|
id_str = f'{f"_StToId" if train_to_id_first else ""}'
|
||||||
|
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
|
||||||
|
sprs_str = '_sprs' if use_sparse_network else ''
|
||||||
|
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
|
||||||
|
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
|
||||||
|
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
|
||||||
|
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
|
||||||
|
|
||||||
model_path = seed_path / '0000_trained_model.zip'
|
if not training:
|
||||||
df_store_path = seed_path / 'train_store.csv'
|
# noinspection PyRedeclaration
|
||||||
weight_store_path = seed_path / 'weight_store.csv'
|
exp_path = Path('output') / 'mn_st_n_2_100_4'
|
||||||
srnn_parameters = dict()
|
|
||||||
for path in [model_path, df_store_path, weight_store_path]:
|
|
||||||
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
|
|
||||||
|
|
||||||
if training:
|
for seed in range(n_seeds):
|
||||||
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
seed_path = exp_path / str(seed)
|
||||||
try:
|
|
||||||
dataset = MNIST(str(data_path), transform=utility_transforms)
|
|
||||||
except RuntimeError:
|
|
||||||
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
|
||||||
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
|
||||||
|
|
||||||
interface = np.prod(dataset[0][0].shape)
|
model_path = seed_path / '0000_trained_model.zip'
|
||||||
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
df_store_path = seed_path / 'train_store.csv'
|
||||||
weight_hidden_size=weight_hidden_size,).to(DEVICE)
|
weight_store_path = seed_path / 'weight_store.csv'
|
||||||
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
srnn_parameters = dict()
|
||||||
weight_hidden_size=weight_hidden_size
|
|
||||||
).to(DEVICE) if use_sparse_network else dense_metanet
|
|
||||||
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
|
|
||||||
|
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
if training:
|
||||||
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9)
|
# Check if files do exist on project location, warn and break.
|
||||||
sparse_optimizer = torch.optim.SGD(
|
for path in [model_path, df_store_path, weight_store_path]:
|
||||||
sparse_metanet.parameters(), lr=0.008, momentum=0.9
|
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
|
||||||
) if use_sparse_network else dense_optimizer
|
|
||||||
|
|
||||||
train_store = new_storage_df('train', None)
|
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
try:
|
||||||
init_tsk = train_to_task_first
|
dataset = MNIST(str(data_path), transform=utility_transforms)
|
||||||
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
except RuntimeError:
|
||||||
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
|
||||||
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
|
||||||
sparse_metanet = sparse_metanet.train()
|
|
||||||
dense_metanet = dense_metanet.train()
|
|
||||||
if is_validation_epoch:
|
|
||||||
metric = torchmetrics.Accuracy()
|
|
||||||
else:
|
|
||||||
metric = None
|
|
||||||
init_st = train_to_id_first and not all(
|
|
||||||
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
|
|
||||||
)
|
|
||||||
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
|
|
||||||
) and train_to_task_first_sequential and force_st_for_n_from_last_epochs
|
|
||||||
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
|
||||||
|
|
||||||
# Self Train
|
interface = np.prod(dataset[0][0].shape)
|
||||||
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
|
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
||||||
# Transfer weights
|
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
|
||||||
if use_sparse_network:
|
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
|
||||||
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
weight_hidden_size=weight_hidden_size, activation=activation
|
||||||
# Zero your gradients for every batch!
|
).to(DEVICE) if use_sparse_network else dense_metanet
|
||||||
sparse_optimizer.zero_grad()
|
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
|
||||||
self_train_loss = sparse_metanet.combined_self_train() * self_train_alpha
|
|
||||||
self_train_loss.backward()
|
|
||||||
# Adjust learning weights
|
|
||||||
sparse_optimizer.step()
|
|
||||||
step_log = dict(Epoch=epoch, Batch=batch,
|
|
||||||
Metric='Self Train Loss', Score=self_train_loss.item())
|
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
# Transfer weights
|
|
||||||
if use_sparse_network:
|
|
||||||
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
|
||||||
|
|
||||||
# Task Train
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
if not init_st:
|
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9)
|
||||||
# Zero your gradients for every batch!
|
sparse_optimizer = torch.optim.SGD(
|
||||||
dense_optimizer.zero_grad()
|
sparse_metanet.parameters(), lr=0.008, momentum=0.9
|
||||||
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
) if use_sparse_network else dense_optimizer
|
||||||
y_pred = dense_metanet(batch_x)
|
|
||||||
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
|
||||||
loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta
|
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
# Adjust learning weights
|
train_store = new_storage_df('train', None)
|
||||||
dense_optimizer.step()
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
|
init_tsk = train_to_task_first
|
||||||
|
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
|
||||||
|
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
|
||||||
|
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
|
||||||
|
sparse_metanet = sparse_metanet.train()
|
||||||
|
dense_metanet = dense_metanet.train()
|
||||||
|
if is_validation_epoch:
|
||||||
|
metric = torchmetrics.Accuracy()
|
||||||
|
else:
|
||||||
|
metric = None
|
||||||
|
init_st = train_to_id_first and not all(
|
||||||
|
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
|
||||||
|
)
|
||||||
|
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
|
||||||
|
) and sequential_task_train and force_st_for_n_from_last_epochs
|
||||||
|
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
|
||||||
|
|
||||||
step_log = dict(Epoch=epoch, Batch=batch,
|
# Self Train
|
||||||
Metric='Task Loss', Score=loss.item())
|
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
# Transfer weights
|
||||||
if is_validation_epoch:
|
if use_sparse_network:
|
||||||
metric(y_pred.cpu(), batch_y.cpu())
|
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
|
||||||
|
for _ in range(n_st_per_batch):
|
||||||
|
self_train_loss = sparse_metanet.combined_self_train(sparse_optimizer, reduction='mean')
|
||||||
|
# noinspection PyUnboundLocalVariable
|
||||||
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
|
Metric='Self Train Loss', Score=self_train_loss.item())
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
# Transfer weights
|
||||||
|
if use_sparse_network:
|
||||||
|
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
|
||||||
|
|
||||||
if batch >= 3 and debug:
|
# Task Train
|
||||||
break
|
if not init_st:
|
||||||
|
# Zero your gradients for every batch!
|
||||||
|
dense_optimizer.zero_grad()
|
||||||
|
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
|
||||||
|
y_pred = dense_metanet(batch_x)
|
||||||
|
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
|
||||||
|
loss = loss_fn(y_pred, batch_y.to(torch.long))
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
if is_validation_epoch:
|
# Adjust learning weights
|
||||||
dense_metanet = dense_metanet.eval()
|
dense_optimizer.step()
|
||||||
if not init_st:
|
|
||||||
|
step_log = dict(Epoch=epoch, Batch=batch,
|
||||||
|
Metric='Task Loss', Score=loss.item())
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
if is_validation_epoch:
|
||||||
|
metric(y_pred.cpu(), batch_y.cpu())
|
||||||
|
|
||||||
|
if batch >= 3 and debug:
|
||||||
|
break
|
||||||
|
|
||||||
|
if is_validation_epoch:
|
||||||
|
dense_metanet = dense_metanet.eval()
|
||||||
|
if not init_st:
|
||||||
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
|
Metric='Train Accuracy', Score=metric.compute().item())
|
||||||
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
|
|
||||||
|
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
||||||
Metric='Train Accuracy', Score=metric.compute().item())
|
Metric='Test Accuracy', Score=accuracy)
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
|
if init_tsk or (train_to_task_first and sequential_task_train):
|
||||||
|
init_tsk = accuracy <= tsk_threshold
|
||||||
|
if init_st or is_validation_epoch:
|
||||||
|
counter_dict = defaultdict(lambda: 0)
|
||||||
|
# This returns ID-functions
|
||||||
|
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||||
|
counter_dict = dict(counter_dict)
|
||||||
|
for key, value in counter_dict.items():
|
||||||
|
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
|
||||||
|
if init_st or is_validation_epoch:
|
||||||
|
for particle in dense_metanet.particles:
|
||||||
|
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
||||||
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||||
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||||
|
train_store = new_storage_df('train', None)
|
||||||
|
weight_store = new_storage_df('weights', meta_weight_count)
|
||||||
|
|
||||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
|
dense_metanet.eval()
|
||||||
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
|
|
||||||
Metric='Test Accuracy', Score=accuracy)
|
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
|
||||||
if init_tsk or (train_to_task_first and train_to_task_first_sequential):
|
|
||||||
init_tsk = accuracy <= tsk_threshold
|
|
||||||
if init_st or is_validation_epoch:
|
|
||||||
counter_dict = defaultdict(lambda: 0)
|
|
||||||
# This returns ID-functions
|
|
||||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
|
||||||
for key, value in dict(counter_dict).items():
|
|
||||||
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
|
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
if init_st or is_validation_epoch:
|
|
||||||
for particle in dense_metanet.particles:
|
|
||||||
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
|
|
||||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
|
||||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
|
||||||
train_store = new_storage_df('train', None)
|
|
||||||
weight_store = new_storage_df('weights', meta_weight_count)
|
|
||||||
|
|
||||||
dense_metanet.eval()
|
counter_dict = defaultdict(lambda: 0)
|
||||||
|
# This returns ID-functions
|
||||||
|
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
||||||
|
for key, value in dict(counter_dict).items():
|
||||||
|
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
||||||
|
train_store.loc[train_store.shape[0]] = step_log
|
||||||
|
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True)
|
||||||
|
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
||||||
|
Metric='Test Accuracy', Score=accuracy.item())
|
||||||
|
for particle in dense_metanet.particles:
|
||||||
|
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
||||||
|
weight_store.loc[weight_store.shape[0]] = weight_log
|
||||||
|
|
||||||
counter_dict = defaultdict(lambda: 0)
|
train_store.loc[train_store.shape[0]] = validation_log
|
||||||
# This returns ID-functions
|
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
||||||
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
|
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
||||||
for key, value in dict(counter_dict).items():
|
|
||||||
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
|
|
||||||
train_store.loc[train_store.shape[0]] = step_log
|
|
||||||
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True)
|
|
||||||
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
|
|
||||||
Metric='Test Accuracy', Score=accuracy.item())
|
|
||||||
for particle in dense_metanet.particles:
|
|
||||||
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
|
|
||||||
weight_store.loc[weight_store.shape[0]] = weight_log
|
|
||||||
|
|
||||||
train_store.loc[train_store.shape[0]] = validation_log
|
plot_training_result(df_store_path)
|
||||||
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
|
plot_training_particle_types(df_store_path)
|
||||||
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
|
|
||||||
|
|
||||||
plot_training_result(df_store_path)
|
try:
|
||||||
plot_training_particle_types(df_store_path)
|
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
||||||
|
except StopIteration:
|
||||||
try:
|
print('Model pattern did not trigger.')
|
||||||
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
|
print(f'Search path was: {seed_path}:')
|
||||||
except StopIteration:
|
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
||||||
print('Model pattern did not trigger.')
|
exit(1)
|
||||||
print(f'Search path was: {seed_path}:')
|
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
||||||
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
|
try:
|
||||||
exit(1)
|
run_particle_dropout_and_plot(seed_path)
|
||||||
latest_model = torch.load(model_path, map_location=DEVICE).eval()
|
except ValueError as e:
|
||||||
try:
|
print(e)
|
||||||
run_particle_dropout_and_plot(seed_path)
|
try:
|
||||||
except ValueError as e:
|
plot_network_connectivity_by_fixtype(model_path)
|
||||||
print(e)
|
except ValueError as e:
|
||||||
try:
|
print(e)
|
||||||
plot_network_connectivity_by_fixtype(model_path)
|
|
||||||
except ValueError as e:
|
|
||||||
print(e)
|
|
||||||
|
|
||||||
if n_seeds >= 2:
|
if n_seeds >= 2:
|
||||||
pass
|
pass
|
||||||
|
|||||||
@@ -6,11 +6,14 @@ from tqdm import tqdm
|
|||||||
from network import FixTypes, Net
|
from network import FixTypes, Net
|
||||||
|
|
||||||
|
|
||||||
|
epsilon_error_margin = pow(10, -5)
|
||||||
|
|
||||||
|
|
||||||
def is_divergent(network: Net) -> bool:
|
def is_divergent(network: Net) -> bool:
|
||||||
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
|
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
|
||||||
|
|
||||||
|
|
||||||
def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
def is_identity_function(network: Net, epsilon=epsilon_error_margin) -> bool:
|
||||||
|
|
||||||
input_data = network.input_weight_matrix()
|
input_data = network.input_weight_matrix()
|
||||||
target_data = network.create_target_weights(input_data)
|
target_data = network.create_target_weights(input_data)
|
||||||
@@ -20,14 +23,14 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
|||||||
rtol=0, atol=epsilon)
|
rtol=0, atol=epsilon)
|
||||||
|
|
||||||
|
|
||||||
def is_zero_fixpoint(network: Net, epsilon=pow(10, -5)) -> bool:
|
def is_zero_fixpoint(network: Net, epsilon=epsilon_error_margin) -> bool:
|
||||||
target_data = network.create_target_weights(network.input_weight_matrix().detach())
|
target_data = network.create_target_weights(network.input_weight_matrix().detach())
|
||||||
result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon)
|
result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon)
|
||||||
# result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix()))))
|
# result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix()))))
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool:
|
def is_secondary_fixpoint(network: Net, epsilon: float = epsilon_error_margin) -> bool:
|
||||||
""" Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT.
|
""" Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT.
|
||||||
If they are within the boundaries, then is secondary fixpoint. """
|
If they are within the boundaries, then is secondary fixpoint. """
|
||||||
|
|
||||||
|
|||||||
50
network.py
50
network.py
@@ -420,7 +420,7 @@ class MetaNet(nn.Module):
|
|||||||
|
|
||||||
) for layer_idx in range(self.depth - 2)]
|
) for layer_idx in range(self.depth - 2)]
|
||||||
)
|
)
|
||||||
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
|
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list) + 1}',
|
||||||
interface=self.width, width=self.out,
|
interface=self.width, width=self.out,
|
||||||
weight_interface=weight_interface,
|
weight_interface=weight_interface,
|
||||||
weight_hidden_size=weight_hidden_size,
|
weight_hidden_size=weight_hidden_size,
|
||||||
@@ -428,8 +428,6 @@ class MetaNet(nn.Module):
|
|||||||
)
|
)
|
||||||
self.dropout_layer = nn.Dropout(p=self.dropout)
|
self.dropout_layer = nn.Dropout(p=self.dropout)
|
||||||
|
|
||||||
self._all_layers_with_particles = [self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last]
|
|
||||||
|
|
||||||
def replace_with_zero(self, ident_key):
|
def replace_with_zero(self, ident_key):
|
||||||
replaced_particles = 0
|
replaced_particles = 0
|
||||||
for particle in self.particles:
|
for particle in self.particles:
|
||||||
@@ -442,48 +440,51 @@ class MetaNet(nn.Module):
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
if self.dropout != 0:
|
|
||||||
x = self.dropout_layer(x)
|
|
||||||
tensor = self._meta_layer_first(x)
|
tensor = self._meta_layer_first(x)
|
||||||
|
residual = None
|
||||||
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
||||||
if self.dropout != 0:
|
|
||||||
tensor = self.dropout_layer(tensor)
|
|
||||||
if idx % 2 == 1 and self.residual_skip:
|
if idx % 2 == 1 and self.residual_skip:
|
||||||
x = tensor.clone()
|
residual = tensor.clone()
|
||||||
tensor = meta_layer(tensor)
|
tensor = meta_layer(tensor)
|
||||||
if idx % 2 == 0 and self.residual_skip:
|
if idx % 2 == 0 and self.residual_skip:
|
||||||
tensor = tensor + x
|
tensor = tensor + residual
|
||||||
if self.dropout != 0:
|
tensor = self._meta_layer_last(tensor)
|
||||||
x = self.dropout_layer(x)
|
|
||||||
tensor = self._meta_layer_last(x)
|
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def particles(self):
|
def particles(self):
|
||||||
return (cell for metalayer in self._all_layers_with_particles for cell in metalayer.particles)
|
return (cell for metalayer in self.all_layers for cell in metalayer.particles)
|
||||||
|
|
||||||
def combined_self_train(self):
|
def combined_self_train(self, optimizer, reduction='mean'):
|
||||||
|
optimizer.zero_grad()
|
||||||
losses = []
|
losses = []
|
||||||
for particle in self.particles:
|
for particle in self.particles:
|
||||||
# Intergrate optimizer and backward function
|
# Intergrate optimizer and backward function
|
||||||
input_data = particle.input_weight_matrix()
|
input_data = particle.input_weight_matrix()
|
||||||
target_data = particle.create_target_weights(input_data)
|
target_data = particle.create_target_weights(input_data)
|
||||||
output = particle(input_data)
|
output = particle(input_data)
|
||||||
losses.append(F.mse_loss(output, target_data))
|
losses.append(F.mse_loss(output, target_data, reduction=reduction))
|
||||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
losses = torch.hstack(losses).sum(dim=-1, keepdim=True)
|
||||||
|
losses.backward()
|
||||||
|
optimizer.step()
|
||||||
|
return losses.detach()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def hyperparams(self):
|
def hyperparams(self):
|
||||||
return {key: val for key, val in self.__dict__.items() if not key.startswith('_')}
|
return {key: val for key, val in self.__dict__.items() if not key.startswith('_')}
|
||||||
|
|
||||||
def replace_particles(self, particle_weights_list):
|
def replace_particles(self, particle_weights_list):
|
||||||
for layer in self._all_layers_with_particles:
|
for layer in self.all_layers:
|
||||||
for cell in layer.meta_cell_list:
|
for cell in layer.meta_cell_list:
|
||||||
# Individual replacement on cell lvl
|
# Individual replacement on cell lvl
|
||||||
for weight in cell.meta_weight_list:
|
for weight in cell.meta_weight_list:
|
||||||
weight.apply_weights(next(particle_weights_list).detach())
|
weight.apply_weights(next(particle_weights_list).detach())
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
@property
|
||||||
|
def all_layers(self):
|
||||||
|
return (x for x in (self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last))
|
||||||
|
|
||||||
|
|
||||||
class MetaNetCompareBaseline(nn.Module):
|
class MetaNetCompareBaseline(nn.Module):
|
||||||
|
|
||||||
@@ -495,19 +496,24 @@ class MetaNetCompareBaseline(nn.Module):
|
|||||||
self.interface = interface
|
self.interface = interface
|
||||||
self.width = width
|
self.width = width
|
||||||
self.depth = depth
|
self.depth = depth
|
||||||
|
|
||||||
self._first_layer = nn.Linear(self.interface, self.width, bias=False)
|
self._first_layer = nn.Linear(self.interface, self.width, bias=False)
|
||||||
self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False) for _ in range(self.depth - 2)])
|
self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False
|
||||||
|
) for _ in range(self.depth - 2)])
|
||||||
self._last_layer = nn.Linear(self.width, self.out, bias=False)
|
self._last_layer = nn.Linear(self.width, self.out, bias=False)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
tensor = self._first_layer(x)
|
tensor = self._first_layer(x)
|
||||||
|
if self.activation:
|
||||||
|
tensor = self.activation(tensor)
|
||||||
|
residual = None
|
||||||
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
|
||||||
if idx % 2 == 1 and self.residual_skip:
|
|
||||||
x = tensor.clone()
|
|
||||||
tensor = meta_layer(tensor)
|
tensor = meta_layer(tensor)
|
||||||
|
if idx % 2 == 1 and self.residual_skip:
|
||||||
|
residual = tensor.clone()
|
||||||
if idx % 2 == 0 and self.residual_skip:
|
if idx % 2 == 0 and self.residual_skip:
|
||||||
tensor = tensor + x
|
tensor = tensor + residual
|
||||||
|
if self.activation:
|
||||||
|
tensor = self.activation(tensor)
|
||||||
tensor = self._last_layer(tensor)
|
tensor = self._last_layer(tensor)
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
|
|||||||
@@ -10,8 +10,11 @@ from torch.utils.data import Dataset, DataLoader
|
|||||||
from torchvision.datasets import MNIST, CIFAR10
|
from torchvision.datasets import MNIST, CIFAR10
|
||||||
from torchvision.transforms import ToTensor, Compose, Resize, Normalize, Grayscale
|
from torchvision.transforms import ToTensor, Compose, Resize, Normalize, Grayscale
|
||||||
import torchmetrics
|
import torchmetrics
|
||||||
|
|
||||||
|
from functionalities_test import epsilon_error_margin as e
|
||||||
from network import MetaNet, MetaNetCompareBaseline
|
from network import MetaNet, MetaNetCompareBaseline
|
||||||
|
|
||||||
|
|
||||||
def extract_weights_from_model(model:MetaNet)->dict:
|
def extract_weights_from_model(model:MetaNet)->dict:
|
||||||
inpt = torch.zeros(5)
|
inpt = torch.zeros(5)
|
||||||
inpt[-1] = 1
|
inpt[-1] = 1
|
||||||
@@ -25,27 +28,51 @@ def extract_weights_from_model(model:MetaNet)->dict:
|
|||||||
return dict(weights)
|
return dict(weights)
|
||||||
|
|
||||||
|
|
||||||
def test_weights_as_model(model, new_weights:dict, data):
|
def test_weights_as_model(meta_net, new_weights:dict, data):
|
||||||
TransferNet = MetaNetCompareBaseline(model.interface, depth=model.depth, width=model.width, out=model.out,
|
transfer_net = MetaNetCompareBaseline(meta_net.interface, depth=meta_net.depth, width=meta_net.width, out=meta_net.out,
|
||||||
residual_skip=True)
|
residual_skip=True)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for weights, parameters in zip(new_weights.values(), TransferNet.parameters()):
|
new_weight_values = list(new_weights.values())
|
||||||
|
old_parameters = list(transfer_net.parameters())
|
||||||
|
assert len(new_weight_values) == len(old_parameters)
|
||||||
|
for weights, parameters in zip(new_weights.values(), transfer_net.parameters()):
|
||||||
parameters[:] = torch.Tensor(weights).view(parameters.shape)[:]
|
parameters[:] = torch.Tensor(weights).view(parameters.shape)[:]
|
||||||
|
|
||||||
TransferNet.eval()
|
transfer_net.eval()
|
||||||
metric = torchmetrics.Accuracy()
|
|
||||||
with tqdm(desc='Test Batch: ') as pbar:
|
# Test if the margin of error is similar
|
||||||
for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'):
|
|
||||||
y = TransferNet(batch_x)
|
im_t = defaultdict(list)
|
||||||
acc = metric(y.cpu(), batch_y.cpu())
|
rand = torch.randn((1, 15 * 15))
|
||||||
pbar.set_postfix_str(f'Acc: {acc}')
|
for net in [meta_net, transfer_net]:
|
||||||
pbar.update()
|
tensor = rand.clone()
|
||||||
|
for layer in net.all_layers:
|
||||||
# metric on all batches using custom accumulation
|
tensor = layer(tensor)
|
||||||
acc = metric.compute()
|
im_t[net.__class__.__name__].append(tensor.detach())
|
||||||
tqdm.write(f"Avg. accuracy on all data: {acc}")
|
|
||||||
return acc
|
im_t = dict(im_t)
|
||||||
|
|
||||||
|
all_close = {f'layer_{idx}': torch.allclose(y1.detach(), y2.detach(), rtol=0, atol=e
|
||||||
|
) for idx, (y1, y2) in enumerate(zip(*im_t.values()))
|
||||||
|
}
|
||||||
|
print(f'Cummulative differences per layer is smaller then {e}:\n {all_close}')
|
||||||
|
# all_errors = {f'layer_{idx}': torch.absolute(y1.detach(), y2.detach(), rtol=0, atol=e
|
||||||
|
# ) for idx, (y1, y2) in enumerate(zip(*im_t.values()))
|
||||||
|
# }
|
||||||
|
|
||||||
|
for net in [meta_net, transfer_net]:
|
||||||
|
net.eval()
|
||||||
|
metric = torchmetrics.Accuracy()
|
||||||
|
with tqdm(desc='Test Batch: ') as pbar:
|
||||||
|
for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'):
|
||||||
|
y = net(batch_x)
|
||||||
|
acc = metric(y.cpu(), batch_y.cpu())
|
||||||
|
pbar.set_postfix_str(f'Acc: {acc}')
|
||||||
|
pbar.update()
|
||||||
|
|
||||||
|
# metric on all batches using custom accumulation
|
||||||
|
acc = metric.compute()
|
||||||
|
tqdm.write(f"Avg. accuracy on {net.__class__.__name__}: {acc}")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -58,7 +85,7 @@ if __name__ == '__main__':
|
|||||||
data_path.mkdir(exist_ok=True, parents=True)
|
data_path.mkdir(exist_ok=True, parents=True)
|
||||||
mnist_test = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=False)
|
mnist_test = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=False)
|
||||||
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
|
||||||
|
|
||||||
model = torch.load(Path('experiments/output/trained_model_ckpt_e50.tp'), map_location=DEVICE).eval()
|
model = torch.load(Path('experiments/output/trained_model_ckpt_e50.tp'), map_location=DEVICE).eval()
|
||||||
weights = extract_weights_from_model(model)
|
weights = extract_weights_from_model(model)
|
||||||
test_weights_as_model(model, weights, d_test)
|
test_weights_as_model(model, weights, d_test)
|
||||||
|
|||||||
@@ -161,7 +161,7 @@ def embed_vector(x, repeat_dim):
|
|||||||
|
|
||||||
|
|
||||||
class SparseNetwork(nn.Module):
|
class SparseNetwork(nn.Module):
|
||||||
def __init__(self, input_dim, depth, width, out, residual_skip=True,
|
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
|
||||||
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
weight_interface=5, weight_hidden_size=2, weight_output_size=1
|
||||||
):
|
):
|
||||||
super(SparseNetwork, self).__init__()
|
super(SparseNetwork, self).__init__()
|
||||||
@@ -170,6 +170,7 @@ class SparseNetwork(nn.Module):
|
|||||||
self.depth_dim = depth
|
self.depth_dim = depth
|
||||||
self.hidden_dim = width
|
self.hidden_dim = width
|
||||||
self.out_dim = out
|
self.out_dim = out
|
||||||
|
self.activation = activation
|
||||||
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
|
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
|
||||||
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
|
||||||
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
|
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
|
||||||
@@ -182,13 +183,17 @@ class SparseNetwork(nn.Module):
|
|||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
|
|
||||||
tensor = self.sparse_layer_forward(x, self.first_layer)
|
tensor = self.sparse_layer_forward(x, self.first_layer)
|
||||||
|
if self.activation:
|
||||||
|
tensor = self.activation(tensor)
|
||||||
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
for nl_idx, network_layer in enumerate(self.hidden_layers):
|
||||||
if nl_idx % 2 == 0 and self.residual_skip:
|
|
||||||
residual = tensor
|
|
||||||
# Sparse Layer pass
|
# Sparse Layer pass
|
||||||
tensor = self.sparse_layer_forward(tensor, network_layer)
|
tensor = self.sparse_layer_forward(tensor, network_layer)
|
||||||
|
|
||||||
if nl_idx % 2 != 0 and self.residual_skip:
|
if self.activation:
|
||||||
|
tensor = self.activation(tensor)
|
||||||
|
if nl_idx % 2 == 0 and self.residual_skip:
|
||||||
|
residual = tensor.clone()
|
||||||
|
if nl_idx % 2 == 1 and self.residual_skip:
|
||||||
# noinspection PyUnboundLocalVariable
|
# noinspection PyUnboundLocalVariable
|
||||||
tensor += residual
|
tensor += residual
|
||||||
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
|
||||||
@@ -234,14 +239,19 @@ class SparseNetwork(nn.Module):
|
|||||||
def sparselayers(self):
|
def sparselayers(self):
|
||||||
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
|
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
|
||||||
|
|
||||||
def combined_self_train(self):
|
def combined_self_train(self, optimizer, reduction='mean'):
|
||||||
losses = []
|
losses = []
|
||||||
for layer in self.sparselayers:
|
for layer in self.sparselayers:
|
||||||
|
optimizer.zero_grad()
|
||||||
x, target_data = layer.get_self_train_inputs_and_targets()
|
x, target_data = layer.get_self_train_inputs_and_targets()
|
||||||
output = layer(x)
|
output = layer(x)
|
||||||
|
|
||||||
losses.append(F.mse_loss(output, target_data) / layer.nr_nets)
|
loss = F.mse_loss(output, target_data, reduction=reduction)
|
||||||
return torch.hstack(losses).sum(dim=-1, keepdim=True)
|
losses.append(loss.detach())
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
return sum(losses)
|
||||||
|
|
||||||
def replace_weights_by_particles(self, particles):
|
def replace_weights_by_particles(self, particles):
|
||||||
particles = list(particles)
|
particles = list(particles)
|
||||||
@@ -274,12 +284,7 @@ def test_sparse_net_sef_train():
|
|||||||
if True:
|
if True:
|
||||||
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
|
||||||
for _ in trange(epochs):
|
for _ in trange(epochs):
|
||||||
optimizer.zero_grad()
|
_ = net.combined_self_train(optimizer)
|
||||||
loss = net.combined_self_train()
|
|
||||||
print(loss)
|
|
||||||
exit()
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
optimizer_dict = {
|
optimizer_dict = {
|
||||||
|
|||||||
Reference in New Issue
Block a user