small fixes new parameters

This commit is contained in:
Steffen Illium
2022-02-25 15:32:56 +01:00
parent 5b2b5b5beb
commit 9d8496a725
5 changed files with 292 additions and 236 deletions

View File

@ -45,8 +45,8 @@ from functionalities_test import test_for_fixpoints
WORKER = 10 if not debug else 2
debug = False
BATCHSIZE = 500 if not debug else 50
EPOCH = 50
VALIDATION_FRQ = 3 if not debug else 1
EPOCH = 100
VALIDATION_FRQ = 4 if not debug else 1
SELF_TRAIN_FRQ = 1 if not debug else 1
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@ -56,6 +56,9 @@ if debug:
class ToFloat:
def __init__(self):
pass
def __call__(self, x):
return x.to(torch.float32)
@ -194,7 +197,7 @@ def plot_training_result(path_to_dataframe):
def plot_network_connectivity_by_fixtype(path_to_trained_model):
m = torch.load(path_to_trained_model, map_location=torch.device('cpu'))
# noinspection PyProtectedMember
particles = [y for x in m._meta_layer_list for y in x.particles]
particles = list(m.particles)
df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name'])
for prtcl in particles:
@ -210,10 +213,16 @@ def plot_network_connectivity_by_fixtype(path_to_trained_model):
for n, fixtype in enumerate([ft.other_func, ft.identity_func]):
plt.clf()
ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype],
legend=False, estimator=None,
palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1)
legend=False, estimator=None, lw=1)
_ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0)
ax.set_title(fixtype)
plt.show()
lines = ax.get_lines()
for line in lines:
line.set_color(sns.color_palette()[n])
if debug:
plt.show()
else:
plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300)
print('plottet')
@ -234,7 +243,7 @@ def run_particle_dropout_test(run_path):
tqdm.write(f'Zero_ident diff = {acc_diff}')
diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff)
diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False)
diff_df.to_csv(diff_store_path, mode='a', header=not diff_store_path.exists(), index=False)
return diff_store_path
@ -246,18 +255,18 @@ def plot_dropout_stacked_barplot(path_to_diff_df):
plt.clf()
fig, ax = plt.subplots(ncols=2)
colors = sns.color_palette()[:diff_df.shape[0]]
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0])
barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', ax=ax[0], palette=colors)
# noinspection PyUnboundLocalVariable
for idx, patch in enumerate(barplot.patches):
if idx != 0:
# we recenter the bar
patch.set_x(patch.get_x() + idx * 0.035)
#for idx, patch in enumerate(barplot.patches):
# if idx != 0:
# # we recenter the bar
# patch.set_x(patch.get_x() + idx * 0.035)
ax[0].set_title('Accuracy after particle dropout')
ax[0].set_xlabel('Accuracy')
ax[0].set_xlabel('Particle Type')
ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, )
ax[1].set_title('Particle Count for ')
ax[1].set_title('Particle Count')
plt.tight_layout()
if debug:
@ -278,196 +287,202 @@ def flat_for_store(parameters):
if __name__ == '__main__':
self_train = True
training = True
train_to_id_first = False
training = False
train_to_id_first = True
train_to_task_first = False
train_to_task_first_sequential = True
sequential_task_train = True
force_st_for_n_from_last_epochs = 5
n_st_per_batch = 3
activation = None # nn.ReLU()
use_sparse_network = False
use_sparse_network = True
tsk_threshold = 0.855
self_train_alpha = 1
batch_train_beta = 1
weight_hidden_size = 3
residual_skip = True
n_seeds = 5
for weight_hidden_size in [3, 4, 5, 6]:
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
assert not (train_to_task_first and train_to_id_first)
tsk_threshold = 0.85
weight_hidden_size = weight_hidden_size
residual_skip = True
n_seeds = 3
st_str = f'{"" if self_train else "no_"}st'
a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else ''
res_str = f'{"" if residual_skip else "_no_res"}'
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
id_str = f'{f"_StToId" if train_to_id_first else ""}'
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
sprs_str = '_sprs' if use_sparse_network else ''
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
force_st_for_n_from_last_epochs and train_to_task_first_sequential and train_to_task_first \
else ""
config_str = f'{a_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}'
data_path = Path('data')
data_path.mkdir(exist_ok=True, parents=True)
assert not (train_to_task_first and train_to_id_first)
for seed in range(n_seeds):
seed_path = exp_path / str(seed)
st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}'
ac_str = f'_{activation.__class__.__name__}' if activation is not None else ''
res_str = f'{"" if residual_skip else "_no_res"}'
# dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}'
id_str = f'{f"_StToId" if train_to_id_first else ""}'
tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}'
sprs_str = '_sprs' if use_sparse_network else ''
f_str = f'_f_{force_st_for_n_from_last_epochs}' if \
force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else ""
config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}'
exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}'
model_path = seed_path / '0000_trained_model.zip'
df_store_path = seed_path / 'train_store.csv'
weight_store_path = seed_path / 'weight_store.csv'
srnn_parameters = dict()
for path in [model_path, df_store_path, weight_store_path]:
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
if not training:
# noinspection PyRedeclaration
exp_path = Path('output') / 'mn_st_n_2_100_4'
if training:
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
try:
dataset = MNIST(str(data_path), transform=utility_transforms)
except RuntimeError:
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
for seed in range(n_seeds):
seed_path = exp_path / str(seed)
interface = np.prod(dataset[0][0].shape)
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size,).to(DEVICE)
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size
).to(DEVICE) if use_sparse_network else dense_metanet
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
model_path = seed_path / '0000_trained_model.zip'
df_store_path = seed_path / 'train_store.csv'
weight_store_path = seed_path / 'weight_store.csv'
srnn_parameters = dict()
loss_fn = nn.CrossEntropyLoss()
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9)
sparse_optimizer = torch.optim.SGD(
sparse_metanet.parameters(), lr=0.008, momentum=0.9
) if use_sparse_network else dense_optimizer
if training:
# Check if files do exist on project location, warn and break.
for path in [model_path, df_store_path, weight_store_path]:
assert not path.exists(), f'Path "{path}" already exists. Check your configuration!'
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)
init_tsk = train_to_task_first
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
sparse_metanet = sparse_metanet.train()
dense_metanet = dense_metanet.train()
if is_validation_epoch:
metric = torchmetrics.Accuracy()
else:
metric = None
init_st = train_to_id_first and not all(
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
)
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
) and train_to_task_first_sequential and force_st_for_n_from_last_epochs
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)])
try:
dataset = MNIST(str(data_path), transform=utility_transforms)
except RuntimeError:
dataset = MNIST(str(data_path), transform=utility_transforms, download=True)
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
# Self Train
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
# Transfer weights
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
# Zero your gradients for every batch!
sparse_optimizer.zero_grad()
self_train_loss = sparse_metanet.combined_self_train() * self_train_alpha
self_train_loss.backward()
# Adjust learning weights
sparse_optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Self Train Loss', Score=self_train_loss.item())
train_store.loc[train_store.shape[0]] = step_log
# Transfer weights
if use_sparse_network:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
interface = np.prod(dataset[0][0].shape)
dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE)
sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip,
weight_hidden_size=weight_hidden_size, activation=activation
).to(DEVICE) if use_sparse_network else dense_metanet
meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters())
# Task Train
if not init_st:
# Zero your gradients for every batch!
dense_optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y_pred = dense_metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta
loss.backward()
loss_fn = nn.CrossEntropyLoss()
dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9)
sparse_optimizer = torch.optim.SGD(
sparse_metanet.parameters(), lr=0.008, momentum=0.9
) if use_sparse_network else dense_optimizer
# Adjust learning weights
dense_optimizer.step()
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)
init_tsk = train_to_task_first
for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'):
is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True
is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True
sparse_metanet = sparse_metanet.train()
dense_metanet = dense_metanet.train()
if is_validation_epoch:
metric = torchmetrics.Accuracy()
else:
metric = None
init_st = train_to_id_first and not all(
x.is_fixpoint == ft.identity_func for x in dense_metanet.particles
)
force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch)
) and sequential_task_train and force_st_for_n_from_last_epochs
for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'):
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y_pred.cpu(), batch_y.cpu())
# Self Train
if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st):
# Transfer weights
if use_sparse_network:
sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles)
for _ in range(n_st_per_batch):
self_train_loss = sparse_metanet.combined_self_train(sparse_optimizer, reduction='mean')
# noinspection PyUnboundLocalVariable
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Self Train Loss', Score=self_train_loss.item())
train_store.loc[train_store.shape[0]] = step_log
# Transfer weights
if use_sparse_network:
dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights)
if batch >= 3 and debug:
break
# Task Train
if not init_st:
# Zero your gradients for every batch!
dense_optimizer.zero_grad()
batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE)
y_pred = dense_metanet(batch_x)
# loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32))
loss = loss_fn(y_pred, batch_y.to(torch.long))
loss.backward()
if is_validation_epoch:
dense_metanet = dense_metanet.eval()
if not init_st:
# Adjust learning weights
dense_optimizer.step()
step_log = dict(Epoch=epoch, Batch=batch,
Metric='Task Loss', Score=loss.item())
train_store.loc[train_store.shape[0]] = step_log
if is_validation_epoch:
metric(y_pred.cpu(), batch_y.cpu())
if batch >= 3 and debug:
break
if is_validation_epoch:
dense_metanet = dense_metanet.eval()
if not init_st:
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
train_store.loc[train_store.shape[0]] = validation_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Train Accuracy', Score=metric.compute().item())
Metric='Test Accuracy', Score=accuracy)
train_store.loc[train_store.shape[0]] = validation_log
if init_tsk or (train_to_task_first and sequential_task_train):
init_tsk = accuracy <= tsk_threshold
if init_st or is_validation_epoch:
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
counter_dict = dict(counter_dict)
for key, value in counter_dict.items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
tqdm.write(f'Fixpoint Tester Results: {counter_dict}')
if init_st or is_validation_epoch:
for particle in dense_metanet.particles:
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)
accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item()
validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy)
train_store.loc[train_store.shape[0]] = validation_log
if init_tsk or (train_to_task_first and train_to_task_first_sequential):
init_tsk = accuracy <= tsk_threshold
if init_st or is_validation_epoch:
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
if init_st or is_validation_epoch:
for particle in dense_metanet.particles:
weight_log = (epoch, particle.name, *flat_for_store(particle.parameters()))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
train_store = new_storage_df('train', None)
weight_store = new_storage_df('weights', meta_weight_count)
dense_metanet.eval()
dense_metanet.eval()
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True)
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
for particle in dense_metanet.particles:
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
weight_store.loc[weight_store.shape[0]] = weight_log
counter_dict = defaultdict(lambda: 0)
# This returns ID-functions
_ = test_for_fixpoints(counter_dict, list(dense_metanet.particles))
for key, value in dict(counter_dict).items():
step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value)
train_store.loc[train_store.shape[0]] = step_log
accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True)
validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE,
Metric='Test Accuracy', Score=accuracy.item())
for particle in dense_metanet.particles:
weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters())))
weight_store.loc[weight_store.shape[0]] = weight_log
train_store.loc[train_store.shape[0]] = validation_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
train_store.loc[train_store.shape[0]] = validation_log
train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False)
weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False)
plot_training_result(df_store_path)
plot_training_particle_types(df_store_path)
plot_training_result(df_store_path)
plot_training_particle_types(df_store_path)
try:
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
except StopIteration:
print('Model pattern did not trigger.')
print(f'Search path was: {seed_path}:')
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
exit(1)
latest_model = torch.load(model_path, map_location=DEVICE).eval()
try:
run_particle_dropout_and_plot(seed_path)
except ValueError as e:
print(e)
try:
plot_network_connectivity_by_fixtype(model_path)
except ValueError as e:
print(e)
try:
model_path = next(seed_path.glob(f'*e{EPOCH}.tp'))
except StopIteration:
print('Model pattern did not trigger.')
print(f'Search path was: {seed_path}:')
print(f'Found Models are: {list(seed_path.rglob(".tp"))}')
exit(1)
latest_model = torch.load(model_path, map_location=DEVICE).eval()
try:
run_particle_dropout_and_plot(seed_path)
except ValueError as e:
print(e)
try:
plot_network_connectivity_by_fixtype(model_path)
except ValueError as e:
print(e)
if n_seeds >= 2:
pass

View File

@ -6,11 +6,14 @@ from tqdm import tqdm
from network import FixTypes, Net
epsilon_error_margin = pow(10, -5)
def is_divergent(network: Net) -> bool:
return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item()
def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
def is_identity_function(network: Net, epsilon=epsilon_error_margin) -> bool:
input_data = network.input_weight_matrix()
target_data = network.create_target_weights(input_data)
@ -20,14 +23,14 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
rtol=0, atol=epsilon)
def is_zero_fixpoint(network: Net, epsilon=pow(10, -5)) -> bool:
def is_zero_fixpoint(network: Net, epsilon=epsilon_error_margin) -> bool:
target_data = network.create_target_weights(network.input_weight_matrix().detach())
result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon)
# result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix()))))
return result
def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool:
def is_secondary_fixpoint(network: Net, epsilon: float = epsilon_error_margin) -> bool:
""" Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT.
If they are within the boundaries, then is secondary fixpoint. """

View File

@ -420,7 +420,7 @@ class MetaNet(nn.Module):
) for layer_idx in range(self.depth - 2)]
)
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}',
self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list) + 1}',
interface=self.width, width=self.out,
weight_interface=weight_interface,
weight_hidden_size=weight_hidden_size,
@ -428,8 +428,6 @@ class MetaNet(nn.Module):
)
self.dropout_layer = nn.Dropout(p=self.dropout)
self._all_layers_with_particles = [self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last]
def replace_with_zero(self, ident_key):
replaced_particles = 0
for particle in self.particles:
@ -442,48 +440,51 @@ class MetaNet(nn.Module):
return self
def forward(self, x):
if self.dropout != 0:
x = self.dropout_layer(x)
tensor = self._meta_layer_first(x)
residual = None
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
if self.dropout != 0:
tensor = self.dropout_layer(tensor)
if idx % 2 == 1 and self.residual_skip:
x = tensor.clone()
residual = tensor.clone()
tensor = meta_layer(tensor)
if idx % 2 == 0 and self.residual_skip:
tensor = tensor + x
if self.dropout != 0:
x = self.dropout_layer(x)
tensor = self._meta_layer_last(x)
tensor = tensor + residual
tensor = self._meta_layer_last(tensor)
return tensor
@property
def particles(self):
return (cell for metalayer in self._all_layers_with_particles for cell in metalayer.particles)
return (cell for metalayer in self.all_layers for cell in metalayer.particles)
def combined_self_train(self):
def combined_self_train(self, optimizer, reduction='mean'):
optimizer.zero_grad()
losses = []
for particle in self.particles:
# Intergrate optimizer and backward function
input_data = particle.input_weight_matrix()
target_data = particle.create_target_weights(input_data)
output = particle(input_data)
losses.append(F.mse_loss(output, target_data))
return torch.hstack(losses).sum(dim=-1, keepdim=True)
losses.append(F.mse_loss(output, target_data, reduction=reduction))
losses = torch.hstack(losses).sum(dim=-1, keepdim=True)
losses.backward()
optimizer.step()
return losses.detach()
@property
def hyperparams(self):
return {key: val for key, val in self.__dict__.items() if not key.startswith('_')}
def replace_particles(self, particle_weights_list):
for layer in self._all_layers_with_particles:
for layer in self.all_layers:
for cell in layer.meta_cell_list:
# Individual replacement on cell lvl
for weight in cell.meta_weight_list:
weight.apply_weights(next(particle_weights_list).detach())
return self
@property
def all_layers(self):
return (x for x in (self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last))
class MetaNetCompareBaseline(nn.Module):
@ -495,19 +496,24 @@ class MetaNetCompareBaseline(nn.Module):
self.interface = interface
self.width = width
self.depth = depth
self._first_layer = nn.Linear(self.interface, self.width, bias=False)
self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False) for _ in range(self.depth - 2)])
self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False
) for _ in range(self.depth - 2)])
self._last_layer = nn.Linear(self.width, self.out, bias=False)
def forward(self, x):
tensor = self._first_layer(x)
if self.activation:
tensor = self.activation(tensor)
residual = None
for idx, meta_layer in enumerate(self._meta_layer_list, start=1):
if idx % 2 == 1 and self.residual_skip:
x = tensor.clone()
tensor = meta_layer(tensor)
if idx % 2 == 1 and self.residual_skip:
residual = tensor.clone()
if idx % 2 == 0 and self.residual_skip:
tensor = tensor + x
tensor = tensor + residual
if self.activation:
tensor = self.activation(tensor)
tensor = self._last_layer(tensor)
return tensor

View File

@ -10,8 +10,11 @@ from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST, CIFAR10
from torchvision.transforms import ToTensor, Compose, Resize, Normalize, Grayscale
import torchmetrics
from functionalities_test import epsilon_error_margin as e
from network import MetaNet, MetaNetCompareBaseline
def extract_weights_from_model(model:MetaNet)->dict:
inpt = torch.zeros(5)
inpt[-1] = 1
@ -25,27 +28,51 @@ def extract_weights_from_model(model:MetaNet)->dict:
return dict(weights)
def test_weights_as_model(model, new_weights:dict, data):
TransferNet = MetaNetCompareBaseline(model.interface, depth=model.depth, width=model.width, out=model.out,
residual_skip=True)
def test_weights_as_model(meta_net, new_weights:dict, data):
transfer_net = MetaNetCompareBaseline(meta_net.interface, depth=meta_net.depth, width=meta_net.width, out=meta_net.out,
residual_skip=True)
with torch.no_grad():
for weights, parameters in zip(new_weights.values(), TransferNet.parameters()):
new_weight_values = list(new_weights.values())
old_parameters = list(transfer_net.parameters())
assert len(new_weight_values) == len(old_parameters)
for weights, parameters in zip(new_weights.values(), transfer_net.parameters()):
parameters[:] = torch.Tensor(weights).view(parameters.shape)[:]
TransferNet.eval()
metric = torchmetrics.Accuracy()
with tqdm(desc='Test Batch: ') as pbar:
for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'):
y = TransferNet(batch_x)
acc = metric(y.cpu(), batch_y.cpu())
pbar.set_postfix_str(f'Acc: {acc}')
pbar.update()
# metric on all batches using custom accumulation
acc = metric.compute()
tqdm.write(f"Avg. accuracy on all data: {acc}")
return acc
transfer_net.eval()
# Test if the margin of error is similar
im_t = defaultdict(list)
rand = torch.randn((1, 15 * 15))
for net in [meta_net, transfer_net]:
tensor = rand.clone()
for layer in net.all_layers:
tensor = layer(tensor)
im_t[net.__class__.__name__].append(tensor.detach())
im_t = dict(im_t)
all_close = {f'layer_{idx}': torch.allclose(y1.detach(), y2.detach(), rtol=0, atol=e
) for idx, (y1, y2) in enumerate(zip(*im_t.values()))
}
print(f'Cummulative differences per layer is smaller then {e}:\n {all_close}')
# all_errors = {f'layer_{idx}': torch.absolute(y1.detach(), y2.detach(), rtol=0, atol=e
# ) for idx, (y1, y2) in enumerate(zip(*im_t.values()))
# }
for net in [meta_net, transfer_net]:
net.eval()
metric = torchmetrics.Accuracy()
with tqdm(desc='Test Batch: ') as pbar:
for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'):
y = net(batch_x)
acc = metric(y.cpu(), batch_y.cpu())
pbar.set_postfix_str(f'Acc: {acc}')
pbar.update()
# metric on all batches using custom accumulation
acc = metric.compute()
tqdm.write(f"Avg. accuracy on {net.__class__.__name__}: {acc}")
if __name__ == '__main__':
@ -58,7 +85,7 @@ if __name__ == '__main__':
data_path.mkdir(exist_ok=True, parents=True)
mnist_test = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=False)
d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER)
model = torch.load(Path('experiments/output/trained_model_ckpt_e50.tp'), map_location=DEVICE).eval()
weights = extract_weights_from_model(model)
test_weights_as_model(model, weights, d_test)

View File

@ -161,7 +161,7 @@ def embed_vector(x, repeat_dim):
class SparseNetwork(nn.Module):
def __init__(self, input_dim, depth, width, out, residual_skip=True,
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
weight_interface=5, weight_hidden_size=2, weight_output_size=1
):
super(SparseNetwork, self).__init__()
@ -170,6 +170,7 @@ class SparseNetwork(nn.Module):
self.depth_dim = depth
self.hidden_dim = width
self.out_dim = out
self.activation = activation
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
@ -182,13 +183,17 @@ class SparseNetwork(nn.Module):
def __call__(self, x):
tensor = self.sparse_layer_forward(x, self.first_layer)
if self.activation:
tensor = self.activation(tensor)
for nl_idx, network_layer in enumerate(self.hidden_layers):
if nl_idx % 2 == 0 and self.residual_skip:
residual = tensor
# Sparse Layer pass
tensor = self.sparse_layer_forward(tensor, network_layer)
if nl_idx % 2 != 0 and self.residual_skip:
if self.activation:
tensor = self.activation(tensor)
if nl_idx % 2 == 0 and self.residual_skip:
residual = tensor.clone()
if nl_idx % 2 == 1 and self.residual_skip:
# noinspection PyUnboundLocalVariable
tensor += residual
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
@ -234,14 +239,19 @@ class SparseNetwork(nn.Module):
def sparselayers(self):
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
def combined_self_train(self):
def combined_self_train(self, optimizer, reduction='mean'):
losses = []
for layer in self.sparselayers:
optimizer.zero_grad()
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
losses.append(F.mse_loss(output, target_data) / layer.nr_nets)
return torch.hstack(losses).sum(dim=-1, keepdim=True)
loss = F.mse_loss(output, target_data, reduction=reduction)
losses.append(loss.detach())
loss.backward()
optimizer.step()
return sum(losses)
def replace_weights_by_particles(self, particles):
particles = list(particles)
@ -274,12 +284,7 @@ def test_sparse_net_sef_train():
if True:
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for _ in trange(epochs):
optimizer.zero_grad()
loss = net.combined_self_train()
print(loss)
exit()
loss.backward()
optimizer.step()
_ = net.combined_self_train(optimizer)
else:
optimizer_dict = {