diff --git a/experiments/meta_task_exp.py b/experiments/meta_task_exp.py index c7fb8ad..3889e55 100644 --- a/experiments/meta_task_exp.py +++ b/experiments/meta_task_exp.py @@ -45,8 +45,8 @@ from functionalities_test import test_for_fixpoints WORKER = 10 if not debug else 2 debug = False BATCHSIZE = 500 if not debug else 50 -EPOCH = 50 -VALIDATION_FRQ = 3 if not debug else 1 +EPOCH = 100 +VALIDATION_FRQ = 4 if not debug else 1 SELF_TRAIN_FRQ = 1 if not debug else 1 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') @@ -56,6 +56,9 @@ if debug: class ToFloat: + def __init__(self): + pass + def __call__(self, x): return x.to(torch.float32) @@ -194,7 +197,7 @@ def plot_training_result(path_to_dataframe): def plot_network_connectivity_by_fixtype(path_to_trained_model): m = torch.load(path_to_trained_model, map_location=torch.device('cpu')) # noinspection PyProtectedMember - particles = [y for x in m._meta_layer_list for y in x.particles] + particles = list(m.particles) df = pd.DataFrame(columns=['type', 'layer', 'neuron', 'name']) for prtcl in particles: @@ -210,10 +213,16 @@ def plot_network_connectivity_by_fixtype(path_to_trained_model): for n, fixtype in enumerate([ft.other_func, ft.identity_func]): plt.clf() ax = sns.lineplot(y='neuron', x='layer', hue='name', data=df[df['type'] == fixtype], - legend=False, estimator=None, - palette=[sns.color_palette()[n]] * (df[df['type'] == fixtype].shape[0]//2), lw=1) + legend=False, estimator=None, lw=1) + _ = sns.lineplot(y=[0, 1], x=[-1, df['layer'].max()], legend=False, estimator=None, lw=0) ax.set_title(fixtype) - plt.show() + lines = ax.get_lines() + for line in lines: + line.set_color(sns.color_palette()[n]) + if debug: + plt.show() + else: + plt.savefig(Path(path_to_trained_model.parent / f'net_connectivity_{fixtype}.png'), dpi=300) print('plottet') @@ -234,7 +243,7 @@ def run_particle_dropout_test(run_path): tqdm.write(f'Zero_ident diff = {acc_diff}') diff_df.loc[diff_df.shape[0]] = (fixpoint_type, acc_post, acc_diff) - diff_df.to_csv(diff_store_path, mode='a', header=not df_store_path.exists(), index=False) + diff_df.to_csv(diff_store_path, mode='a', header=not diff_store_path.exists(), index=False) return diff_store_path @@ -246,18 +255,18 @@ def plot_dropout_stacked_barplot(path_to_diff_df): plt.clf() fig, ax = plt.subplots(ncols=2) colors = sns.color_palette()[:diff_df.shape[0]] - barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', palette=colors, ax=ax[0]) + barplot = sns.barplot(data=diff_df, y='Accuracy', x='Particle Type', ax=ax[0], palette=colors) # noinspection PyUnboundLocalVariable - for idx, patch in enumerate(barplot.patches): - if idx != 0: - # we recenter the bar - patch.set_x(patch.get_x() + idx * 0.035) + #for idx, patch in enumerate(barplot.patches): + # if idx != 0: + # # we recenter the bar + # patch.set_x(patch.get_x() + idx * 0.035) ax[0].set_title('Accuracy after particle dropout') - ax[0].set_xlabel('Accuracy') + ax[0].set_xlabel('Particle Type') ax[1].pie(particle_dict.values(), labels=particle_dict.keys(), colors=colors, ) - ax[1].set_title('Particle Count for ') + ax[1].set_title('Particle Count') plt.tight_layout() if debug: @@ -278,196 +287,202 @@ def flat_for_store(parameters): if __name__ == '__main__': self_train = True - training = True - train_to_id_first = False + training = False + train_to_id_first = True train_to_task_first = False - train_to_task_first_sequential = True + sequential_task_train = True force_st_for_n_from_last_epochs = 5 + n_st_per_batch = 3 + activation = None # nn.ReLU() - use_sparse_network = False + use_sparse_network = True - tsk_threshold = 0.855 - self_train_alpha = 1 - batch_train_beta = 1 - weight_hidden_size = 3 - residual_skip = True - n_seeds = 5 + for weight_hidden_size in [3, 4, 5, 6]: - data_path = Path('data') - data_path.mkdir(exist_ok=True, parents=True) - assert not (train_to_task_first and train_to_id_first) + tsk_threshold = 0.85 + weight_hidden_size = weight_hidden_size + residual_skip = True + n_seeds = 3 - st_str = f'{"" if self_train else "no_"}st' - a_str = f'_alpha_{self_train_alpha}' if self_train_alpha != 1 else '' - res_str = f'{"" if residual_skip else "_no_res"}' - # dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}' - id_str = f'{f"_StToId" if train_to_id_first else ""}' - tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}' - sprs_str = '_sprs' if use_sparse_network else '' - f_str = f'_f_{force_st_for_n_from_last_epochs}' if \ - force_st_for_n_from_last_epochs and train_to_task_first_sequential and train_to_task_first \ - else "" - config_str = f'{a_str}{res_str}{id_str}{tsk_str}{f_str}{sprs_str}' - exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}' + data_path = Path('data') + data_path.mkdir(exist_ok=True, parents=True) + assert not (train_to_task_first and train_to_id_first) - for seed in range(n_seeds): - seed_path = exp_path / str(seed) + st_str = f'{"" if self_train else "no_"}st{f"_n_{n_st_per_batch}" if n_st_per_batch else ""}' + ac_str = f'_{activation.__class__.__name__}' if activation is not None else '' + res_str = f'{"" if residual_skip else "_no_res"}' + # dr_str = f'{f"_dr_{dropout}" if dropout != 0 else ""}' + id_str = f'{f"_StToId" if train_to_id_first else ""}' + tsk_str = f'{f"_Tsk_{tsk_threshold}" if train_to_task_first and tsk_threshold != 1 else ""}' + sprs_str = '_sprs' if use_sparse_network else '' + f_str = f'_f_{force_st_for_n_from_last_epochs}' if \ + force_st_for_n_from_last_epochs and sequential_task_train and train_to_task_first else "" + config_str = f'{res_str}{id_str}{tsk_str}{f_str}{sprs_str}' + exp_path = Path('output') / f'mn_{st_str}_{EPOCH}_{weight_hidden_size}{config_str}{ac_str}' - model_path = seed_path / '0000_trained_model.zip' - df_store_path = seed_path / 'train_store.csv' - weight_store_path = seed_path / 'weight_store.csv' - srnn_parameters = dict() - for path in [model_path, df_store_path, weight_store_path]: - assert not path.exists(), f'Path "{path}" already exists. Check your configuration!' + if not training: + # noinspection PyRedeclaration + exp_path = Path('output') / 'mn_st_n_2_100_4' - if training: - utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)]) - try: - dataset = MNIST(str(data_path), transform=utility_transforms) - except RuntimeError: - dataset = MNIST(str(data_path), transform=utility_transforms, download=True) - d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER) + for seed in range(n_seeds): + seed_path = exp_path / str(seed) - interface = np.prod(dataset[0][0].shape) - dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip, - weight_hidden_size=weight_hidden_size,).to(DEVICE) - sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip, - weight_hidden_size=weight_hidden_size - ).to(DEVICE) if use_sparse_network else dense_metanet - meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters()) + model_path = seed_path / '0000_trained_model.zip' + df_store_path = seed_path / 'train_store.csv' + weight_store_path = seed_path / 'weight_store.csv' + srnn_parameters = dict() - loss_fn = nn.CrossEntropyLoss() - dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9) - sparse_optimizer = torch.optim.SGD( - sparse_metanet.parameters(), lr=0.008, momentum=0.9 - ) if use_sparse_network else dense_optimizer + if training: + # Check if files do exist on project location, warn and break. + for path in [model_path, df_store_path, weight_store_path]: + assert not path.exists(), f'Path "{path}" already exists. Check your configuration!' - train_store = new_storage_df('train', None) - weight_store = new_storage_df('weights', meta_weight_count) - init_tsk = train_to_task_first - for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'): - is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True - is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True - sparse_metanet = sparse_metanet.train() - dense_metanet = dense_metanet.train() - if is_validation_epoch: - metric = torchmetrics.Accuracy() - else: - metric = None - init_st = train_to_id_first and not all( - x.is_fixpoint == ft.identity_func for x in dense_metanet.particles - ) - force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch) - ) and train_to_task_first_sequential and force_st_for_n_from_last_epochs - for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'): + utility_transforms = Compose([ToTensor(), ToFloat(), Resize((15, 15)), Flatten(start_dim=0)]) + try: + dataset = MNIST(str(data_path), transform=utility_transforms) + except RuntimeError: + dataset = MNIST(str(data_path), transform=utility_transforms, download=True) + d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER) - # Self Train - if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st): - # Transfer weights - if use_sparse_network: - sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles) - # Zero your gradients for every batch! - sparse_optimizer.zero_grad() - self_train_loss = sparse_metanet.combined_self_train() * self_train_alpha - self_train_loss.backward() - # Adjust learning weights - sparse_optimizer.step() - step_log = dict(Epoch=epoch, Batch=batch, - Metric='Self Train Loss', Score=self_train_loss.item()) - train_store.loc[train_store.shape[0]] = step_log - # Transfer weights - if use_sparse_network: - dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights) + interface = np.prod(dataset[0][0].shape) + dense_metanet = MetaNet(interface, depth=5, width=6, out=10, residual_skip=residual_skip, + weight_hidden_size=weight_hidden_size, activation=activation).to(DEVICE) + sparse_metanet = SparseNetwork(interface, depth=5, width=6, out=10, residual_skip=residual_skip, + weight_hidden_size=weight_hidden_size, activation=activation + ).to(DEVICE) if use_sparse_network else dense_metanet + meta_weight_count = sum(p.numel() for p in next(dense_metanet.particles).parameters()) - # Task Train - if not init_st: - # Zero your gradients for every batch! - dense_optimizer.zero_grad() - batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE) - y_pred = dense_metanet(batch_x) - # loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32)) - loss = loss_fn(y_pred, batch_y.to(torch.long)) * batch_train_beta - loss.backward() + loss_fn = nn.CrossEntropyLoss() + dense_optimizer = torch.optim.SGD(dense_metanet.parameters(), lr=0.008, momentum=0.9) + sparse_optimizer = torch.optim.SGD( + sparse_metanet.parameters(), lr=0.008, momentum=0.9 + ) if use_sparse_network else dense_optimizer - # Adjust learning weights - dense_optimizer.step() + train_store = new_storage_df('train', None) + weight_store = new_storage_df('weights', meta_weight_count) + init_tsk = train_to_task_first + for epoch in tqdm(range(EPOCH), desc='MetaNet Train - Epochs'): + is_validation_epoch = epoch % VALIDATION_FRQ == 0 if not debug else True + is_self_train_epoch = epoch % SELF_TRAIN_FRQ == 0 if not debug else True + sparse_metanet = sparse_metanet.train() + dense_metanet = dense_metanet.train() + if is_validation_epoch: + metric = torchmetrics.Accuracy() + else: + metric = None + init_st = train_to_id_first and not all( + x.is_fixpoint == ft.identity_func for x in dense_metanet.particles + ) + force_st = (force_st_for_n_from_last_epochs >= (EPOCH - epoch) + ) and sequential_task_train and force_st_for_n_from_last_epochs + for batch, (batch_x, batch_y) in tqdm(enumerate(d), total=len(d), desc='MetaNet Train - Batch'): - step_log = dict(Epoch=epoch, Batch=batch, - Metric='Task Loss', Score=loss.item()) - train_store.loc[train_store.shape[0]] = step_log - if is_validation_epoch: - metric(y_pred.cpu(), batch_y.cpu()) + # Self Train + if self_train and ((not init_tsk and (is_self_train_epoch or init_st)) or force_st): + # Transfer weights + if use_sparse_network: + sparse_metanet = sparse_metanet.replace_weights_by_particles(dense_metanet.particles) + for _ in range(n_st_per_batch): + self_train_loss = sparse_metanet.combined_self_train(sparse_optimizer, reduction='mean') + # noinspection PyUnboundLocalVariable + step_log = dict(Epoch=epoch, Batch=batch, + Metric='Self Train Loss', Score=self_train_loss.item()) + train_store.loc[train_store.shape[0]] = step_log + # Transfer weights + if use_sparse_network: + dense_metanet = dense_metanet.replace_particles(sparse_metanet.particle_weights) - if batch >= 3 and debug: - break + # Task Train + if not init_st: + # Zero your gradients for every batch! + dense_optimizer.zero_grad() + batch_x, batch_y = batch_x.to(DEVICE), batch_y.to(DEVICE) + y_pred = dense_metanet(batch_x) + # loss = loss_fn(y, batch_y.unsqueeze(-1).to(torch.float32)) + loss = loss_fn(y_pred, batch_y.to(torch.long)) + loss.backward() - if is_validation_epoch: - dense_metanet = dense_metanet.eval() - if not init_st: + # Adjust learning weights + dense_optimizer.step() + + step_log = dict(Epoch=epoch, Batch=batch, + Metric='Task Loss', Score=loss.item()) + train_store.loc[train_store.shape[0]] = step_log + if is_validation_epoch: + metric(y_pred.cpu(), batch_y.cpu()) + + if batch >= 3 and debug: + break + + if is_validation_epoch: + dense_metanet = dense_metanet.eval() + if not init_st: + validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, + Metric='Train Accuracy', Score=metric.compute().item()) + train_store.loc[train_store.shape[0]] = validation_log + + accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item() validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, - Metric='Train Accuracy', Score=metric.compute().item()) + Metric='Test Accuracy', Score=accuracy) train_store.loc[train_store.shape[0]] = validation_log + if init_tsk or (train_to_task_first and sequential_task_train): + init_tsk = accuracy <= tsk_threshold + if init_st or is_validation_epoch: + counter_dict = defaultdict(lambda: 0) + # This returns ID-functions + _ = test_for_fixpoints(counter_dict, list(dense_metanet.particles)) + counter_dict = dict(counter_dict) + for key, value in counter_dict.items(): + step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value) + train_store.loc[train_store.shape[0]] = step_log + tqdm.write(f'Fixpoint Tester Results: {counter_dict}') + if init_st or is_validation_epoch: + for particle in dense_metanet.particles: + weight_log = (epoch, particle.name, *flat_for_store(particle.parameters())) + weight_store.loc[weight_store.shape[0]] = weight_log + train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) + weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) + train_store = new_storage_df('train', None) + weight_store = new_storage_df('weights', meta_weight_count) - accuracy = checkpoint_and_validate(dense_metanet, seed_path, epoch).item() - validation_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, - Metric='Test Accuracy', Score=accuracy) - train_store.loc[train_store.shape[0]] = validation_log - if init_tsk or (train_to_task_first and train_to_task_first_sequential): - init_tsk = accuracy <= tsk_threshold - if init_st or is_validation_epoch: - counter_dict = defaultdict(lambda: 0) - # This returns ID-functions - _ = test_for_fixpoints(counter_dict, list(dense_metanet.particles)) - for key, value in dict(counter_dict).items(): - step_log = dict(Epoch=int(epoch), Batch=BATCHSIZE, Metric=key, Score=value) - train_store.loc[train_store.shape[0]] = step_log - if init_st or is_validation_epoch: - for particle in dense_metanet.particles: - weight_log = (epoch, particle.name, *flat_for_store(particle.parameters())) - weight_store.loc[weight_store.shape[0]] = weight_log - train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) - weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) - train_store = new_storage_df('train', None) - weight_store = new_storage_df('weights', meta_weight_count) + dense_metanet.eval() - dense_metanet.eval() + counter_dict = defaultdict(lambda: 0) + # This returns ID-functions + _ = test_for_fixpoints(counter_dict, list(dense_metanet.particles)) + for key, value in dict(counter_dict).items(): + step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value) + train_store.loc[train_store.shape[0]] = step_log + accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True) + validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE, + Metric='Test Accuracy', Score=accuracy.item()) + for particle in dense_metanet.particles: + weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters()))) + weight_store.loc[weight_store.shape[0]] = weight_log - counter_dict = defaultdict(lambda: 0) - # This returns ID-functions - _ = test_for_fixpoints(counter_dict, list(dense_metanet.particles)) - for key, value in dict(counter_dict).items(): - step_log = dict(Epoch=int(EPOCH), Batch=BATCHSIZE, Metric=key, Score=value) - train_store.loc[train_store.shape[0]] = step_log - accuracy = checkpoint_and_validate(dense_metanet, seed_path, EPOCH, final_model=True) - validation_log = dict(Epoch=EPOCH, Batch=BATCHSIZE, - Metric='Test Accuracy', Score=accuracy.item()) - for particle in dense_metanet.particles: - weight_log = (EPOCH, particle.name, *(flat_for_store(particle.parameters()))) - weight_store.loc[weight_store.shape[0]] = weight_log + train_store.loc[train_store.shape[0]] = validation_log + train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) + weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) - train_store.loc[train_store.shape[0]] = validation_log - train_store.to_csv(df_store_path, mode='a', header=not df_store_path.exists(), index=False) - weight_store.to_csv(weight_store_path, mode='a', header=not weight_store_path.exists(), index=False) + plot_training_result(df_store_path) + plot_training_particle_types(df_store_path) - plot_training_result(df_store_path) - plot_training_particle_types(df_store_path) - - try: - model_path = next(seed_path.glob(f'*e{EPOCH}.tp')) - except StopIteration: - print('Model pattern did not trigger.') - print(f'Search path was: {seed_path}:') - print(f'Found Models are: {list(seed_path.rglob(".tp"))}') - exit(1) - latest_model = torch.load(model_path, map_location=DEVICE).eval() - try: - run_particle_dropout_and_plot(seed_path) - except ValueError as e: - print(e) - try: - plot_network_connectivity_by_fixtype(model_path) - except ValueError as e: - print(e) + try: + model_path = next(seed_path.glob(f'*e{EPOCH}.tp')) + except StopIteration: + print('Model pattern did not trigger.') + print(f'Search path was: {seed_path}:') + print(f'Found Models are: {list(seed_path.rglob(".tp"))}') + exit(1) + latest_model = torch.load(model_path, map_location=DEVICE).eval() + try: + run_particle_dropout_and_plot(seed_path) + except ValueError as e: + print(e) + try: + plot_network_connectivity_by_fixtype(model_path) + except ValueError as e: + print(e) if n_seeds >= 2: pass diff --git a/functionalities_test.py b/functionalities_test.py index 7165e30..4dd1724 100644 --- a/functionalities_test.py +++ b/functionalities_test.py @@ -6,11 +6,14 @@ from tqdm import tqdm from network import FixTypes, Net +epsilon_error_margin = pow(10, -5) + + def is_divergent(network: Net) -> bool: return network.input_weight_matrix().isinf().any().item() or network.input_weight_matrix().isnan().any().item() -def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool: +def is_identity_function(network: Net, epsilon=epsilon_error_margin) -> bool: input_data = network.input_weight_matrix() target_data = network.create_target_weights(input_data) @@ -20,14 +23,14 @@ def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool: rtol=0, atol=epsilon) -def is_zero_fixpoint(network: Net, epsilon=pow(10, -5)) -> bool: +def is_zero_fixpoint(network: Net, epsilon=epsilon_error_margin) -> bool: target_data = network.create_target_weights(network.input_weight_matrix().detach()) result = torch.allclose(target_data, torch.zeros_like(target_data), rtol=0, atol=epsilon) # result = bool(len(np.nonzero(network.create_target_weights(network.input_weight_matrix())))) return result -def is_secondary_fixpoint(network: Net, epsilon: float = pow(10, -5)) -> bool: +def is_secondary_fixpoint(network: Net, epsilon: float = epsilon_error_margin) -> bool: """ Secondary fixpoint check is done like this: compare first INPUT with second OUTPUT. If they are within the boundaries, then is secondary fixpoint. """ diff --git a/network.py b/network.py index eed4bda..67c69ca 100644 --- a/network.py +++ b/network.py @@ -420,7 +420,7 @@ class MetaNet(nn.Module): ) for layer_idx in range(self.depth - 2)] ) - self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list)}', + self._meta_layer_last = MetaLayer(name=f'L{len(self._meta_layer_list) + 1}', interface=self.width, width=self.out, weight_interface=weight_interface, weight_hidden_size=weight_hidden_size, @@ -428,8 +428,6 @@ class MetaNet(nn.Module): ) self.dropout_layer = nn.Dropout(p=self.dropout) - self._all_layers_with_particles = [self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last] - def replace_with_zero(self, ident_key): replaced_particles = 0 for particle in self.particles: @@ -442,48 +440,51 @@ class MetaNet(nn.Module): return self def forward(self, x): - if self.dropout != 0: - x = self.dropout_layer(x) tensor = self._meta_layer_first(x) + residual = None for idx, meta_layer in enumerate(self._meta_layer_list, start=1): - if self.dropout != 0: - tensor = self.dropout_layer(tensor) if idx % 2 == 1 and self.residual_skip: - x = tensor.clone() + residual = tensor.clone() tensor = meta_layer(tensor) if idx % 2 == 0 and self.residual_skip: - tensor = tensor + x - if self.dropout != 0: - x = self.dropout_layer(x) - tensor = self._meta_layer_last(x) + tensor = tensor + residual + tensor = self._meta_layer_last(tensor) return tensor @property def particles(self): - return (cell for metalayer in self._all_layers_with_particles for cell in metalayer.particles) + return (cell for metalayer in self.all_layers for cell in metalayer.particles) - def combined_self_train(self): + def combined_self_train(self, optimizer, reduction='mean'): + optimizer.zero_grad() losses = [] for particle in self.particles: # Intergrate optimizer and backward function input_data = particle.input_weight_matrix() target_data = particle.create_target_weights(input_data) output = particle(input_data) - losses.append(F.mse_loss(output, target_data)) - return torch.hstack(losses).sum(dim=-1, keepdim=True) + losses.append(F.mse_loss(output, target_data, reduction=reduction)) + losses = torch.hstack(losses).sum(dim=-1, keepdim=True) + losses.backward() + optimizer.step() + return losses.detach() @property def hyperparams(self): return {key: val for key, val in self.__dict__.items() if not key.startswith('_')} def replace_particles(self, particle_weights_list): - for layer in self._all_layers_with_particles: + for layer in self.all_layers: for cell in layer.meta_cell_list: # Individual replacement on cell lvl for weight in cell.meta_weight_list: weight.apply_weights(next(particle_weights_list).detach()) return self + @property + def all_layers(self): + return (x for x in (self._meta_layer_first, *self._meta_layer_list, self._meta_layer_last)) + class MetaNetCompareBaseline(nn.Module): @@ -495,19 +496,24 @@ class MetaNetCompareBaseline(nn.Module): self.interface = interface self.width = width self.depth = depth - self._first_layer = nn.Linear(self.interface, self.width, bias=False) - self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False) for _ in range(self.depth - 2)]) + self._meta_layer_list = nn.ModuleList([nn.Linear(self.width, self.width, bias=False + ) for _ in range(self.depth - 2)]) self._last_layer = nn.Linear(self.width, self.out, bias=False) def forward(self, x): tensor = self._first_layer(x) + if self.activation: + tensor = self.activation(tensor) + residual = None for idx, meta_layer in enumerate(self._meta_layer_list, start=1): - if idx % 2 == 1 and self.residual_skip: - x = tensor.clone() tensor = meta_layer(tensor) + if idx % 2 == 1 and self.residual_skip: + residual = tensor.clone() if idx % 2 == 0 and self.residual_skip: - tensor = tensor + x + tensor = tensor + residual + if self.activation: + tensor = self.activation(tensor) tensor = self._last_layer(tensor) return tensor diff --git a/sanity_check_weights.py b/sanity_check_weights.py index e6449f2..407d41e 100644 --- a/sanity_check_weights.py +++ b/sanity_check_weights.py @@ -10,8 +10,11 @@ from torch.utils.data import Dataset, DataLoader from torchvision.datasets import MNIST, CIFAR10 from torchvision.transforms import ToTensor, Compose, Resize, Normalize, Grayscale import torchmetrics + +from functionalities_test import epsilon_error_margin as e from network import MetaNet, MetaNetCompareBaseline + def extract_weights_from_model(model:MetaNet)->dict: inpt = torch.zeros(5) inpt[-1] = 1 @@ -25,27 +28,51 @@ def extract_weights_from_model(model:MetaNet)->dict: return dict(weights) -def test_weights_as_model(model, new_weights:dict, data): - TransferNet = MetaNetCompareBaseline(model.interface, depth=model.depth, width=model.width, out=model.out, - residual_skip=True) - +def test_weights_as_model(meta_net, new_weights:dict, data): + transfer_net = MetaNetCompareBaseline(meta_net.interface, depth=meta_net.depth, width=meta_net.width, out=meta_net.out, + residual_skip=True) with torch.no_grad(): - for weights, parameters in zip(new_weights.values(), TransferNet.parameters()): + new_weight_values = list(new_weights.values()) + old_parameters = list(transfer_net.parameters()) + assert len(new_weight_values) == len(old_parameters) + for weights, parameters in zip(new_weights.values(), transfer_net.parameters()): parameters[:] = torch.Tensor(weights).view(parameters.shape)[:] - TransferNet.eval() - metric = torchmetrics.Accuracy() - with tqdm(desc='Test Batch: ') as pbar: - for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'): - y = TransferNet(batch_x) - acc = metric(y.cpu(), batch_y.cpu()) - pbar.set_postfix_str(f'Acc: {acc}') - pbar.update() - - # metric on all batches using custom accumulation - acc = metric.compute() - tqdm.write(f"Avg. accuracy on all data: {acc}") - return acc + transfer_net.eval() + + # Test if the margin of error is similar + + im_t = defaultdict(list) + rand = torch.randn((1, 15 * 15)) + for net in [meta_net, transfer_net]: + tensor = rand.clone() + for layer in net.all_layers: + tensor = layer(tensor) + im_t[net.__class__.__name__].append(tensor.detach()) + + im_t = dict(im_t) + + all_close = {f'layer_{idx}': torch.allclose(y1.detach(), y2.detach(), rtol=0, atol=e + ) for idx, (y1, y2) in enumerate(zip(*im_t.values())) + } + print(f'Cummulative differences per layer is smaller then {e}:\n {all_close}') + # all_errors = {f'layer_{idx}': torch.absolute(y1.detach(), y2.detach(), rtol=0, atol=e + # ) for idx, (y1, y2) in enumerate(zip(*im_t.values())) + # } + + for net in [meta_net, transfer_net]: + net.eval() + metric = torchmetrics.Accuracy() + with tqdm(desc='Test Batch: ') as pbar: + for batch, (batch_x, batch_y) in tqdm(enumerate(data), total=len(data), desc='MetaNet Sanity Check'): + y = net(batch_x) + acc = metric(y.cpu(), batch_y.cpu()) + pbar.set_postfix_str(f'Acc: {acc}') + pbar.update() + + # metric on all batches using custom accumulation + acc = metric.compute() + tqdm.write(f"Avg. accuracy on {net.__class__.__name__}: {acc}") if __name__ == '__main__': @@ -58,7 +85,7 @@ if __name__ == '__main__': data_path.mkdir(exist_ok=True, parents=True) mnist_test = MNIST(str(data_path), transform=MNIST_TRANSFORM, download=True, train=False) d_test = DataLoader(mnist_test, batch_size=BATCHSIZE, shuffle=False, drop_last=True, num_workers=WORKER) - + model = torch.load(Path('experiments/output/trained_model_ckpt_e50.tp'), map_location=DEVICE).eval() weights = extract_weights_from_model(model) test_weights_as_model(model, weights, d_test) diff --git a/sparse_net.py b/sparse_net.py index c9fc8e4..a9c6789 100644 --- a/sparse_net.py +++ b/sparse_net.py @@ -161,7 +161,7 @@ def embed_vector(x, repeat_dim): class SparseNetwork(nn.Module): - def __init__(self, input_dim, depth, width, out, residual_skip=True, + def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None, weight_interface=5, weight_hidden_size=2, weight_output_size=1 ): super(SparseNetwork, self).__init__() @@ -170,6 +170,7 @@ class SparseNetwork(nn.Module): self.depth_dim = depth self.hidden_dim = width self.out_dim = out + self.activation = activation self.first_layer = SparseLayer(self.input_dim * self.hidden_dim, interface=weight_interface, width=weight_hidden_size, out=weight_output_size) self.last_layer = SparseLayer(self.hidden_dim * self.out_dim, @@ -182,13 +183,17 @@ class SparseNetwork(nn.Module): def __call__(self, x): tensor = self.sparse_layer_forward(x, self.first_layer) + if self.activation: + tensor = self.activation(tensor) for nl_idx, network_layer in enumerate(self.hidden_layers): - if nl_idx % 2 == 0 and self.residual_skip: - residual = tensor # Sparse Layer pass tensor = self.sparse_layer_forward(tensor, network_layer) - if nl_idx % 2 != 0 and self.residual_skip: + if self.activation: + tensor = self.activation(tensor) + if nl_idx % 2 == 0 and self.residual_skip: + residual = tensor.clone() + if nl_idx % 2 == 1 and self.residual_skip: # noinspection PyUnboundLocalVariable tensor += residual tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim) @@ -234,14 +239,19 @@ class SparseNetwork(nn.Module): def sparselayers(self): return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer)) - def combined_self_train(self): + def combined_self_train(self, optimizer, reduction='mean'): losses = [] for layer in self.sparselayers: + optimizer.zero_grad() x, target_data = layer.get_self_train_inputs_and_targets() output = layer(x) - losses.append(F.mse_loss(output, target_data) / layer.nr_nets) - return torch.hstack(losses).sum(dim=-1, keepdim=True) + loss = F.mse_loss(output, target_data, reduction=reduction) + losses.append(loss.detach()) + loss.backward() + optimizer.step() + + return sum(losses) def replace_weights_by_particles(self, particles): particles = list(particles) @@ -274,12 +284,7 @@ def test_sparse_net_sef_train(): if True: optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9) for _ in trange(epochs): - optimizer.zero_grad() - loss = net.combined_self_train() - print(loss) - exit() - loss.backward() - optimizer.step() + _ = net.combined_self_train(optimizer) else: optimizer_dict = {