2022-02-25 15:32:56 +01:00

336 lines
14 KiB
Python

from collections import defaultdict
from torch import nn
import functionalities_test
from network import Net
from functionalities_test import is_identity_function
from tqdm import tqdm,trange
import numpy as np
from pathlib import Path
import torch
from torch.nn import Flatten
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Compose, Resize
class SparseLayer(nn.Module):
def __init__(self, nr_nets, interface=5, depth=3, width=2, out=1):
super(SparseLayer, self).__init__()
self.nr_nets = nr_nets
self.interface_dim = interface
self.depth_dim = depth
self.hidden_dim = width
self.out_dim = out
dummy_net = Net(self.interface_dim, self.hidden_dim, self.out_dim)
self.dummy_net_shapes = [list(x.shape) for x in dummy_net.parameters()]
self.dummy_net_weight_pos_enc = dummy_net._weight_pos_enc
self.sparse_sub_layer = list()
self.indices = list()
self.diag_shapes = list()
self.weights = nn.ParameterList()
self._particles = None
for layer_id in range(self.depth_dim):
indices, weights, diag_shape = self.coo_sparse_layer(layer_id)
self.indices.append(indices)
self.diag_shapes.append(diag_shape)
self.weights.append(weights)
def coo_sparse_layer(self, layer_id):
layer_shape = self.dummy_net_shapes[layer_id]
sparse_diagonal = np.eye(self.nr_nets).repeat(layer_shape[0], axis=-2).repeat(layer_shape[1], axis=-1)
indices = torch.Tensor(np.argwhere(sparse_diagonal == 1).T)
values = torch.nn.Parameter(torch.randn((np.prod((*layer_shape, self.nr_nets)).item())), requires_grad=True)
return indices, values, sparse_diagonal.shape
def get_self_train_inputs_and_targets(self):
# view weights of each sublayer in equal chunks, each column representing weights of one selfrepNN
# i.e., first interface*hidden weights of layer1, first hidden*hidden weights of layer2
# and first hidden*out weights of layer3 = first net
# [nr_layers*[nr_net*nr_weights_layer_i]]
weights = [layer.view(-1, int(len(layer)/self.nr_nets)) for layer in self.weights]
# [nr_net*[nr_weights]]
weights_per_net = [torch.cat([layer[i] for layer in weights]).view(-1, 1) for i in range(self.nr_nets)]
# (16, 25)
encoding_matrix, mask = self.dummy_net_weight_pos_enc
weight_device = weights_per_net[0].device
if weight_device != encoding_matrix.device or weight_device != mask.device:
encoding_matrix, mask = encoding_matrix.to(weight_device), mask.to(weight_device)
self.dummy_net_weight_pos_enc = encoding_matrix, mask
inputs = torch.hstack(
[encoding_matrix * mask + weights_per_net[i].expand(-1, encoding_matrix.shape[-1]) * (1 - mask)
for i in range(self.nr_nets)]
)
targets = torch.hstack(weights_per_net)
return inputs.T.detach(), targets.T.detach()
@property
def particles(self):
if self._particles is None:
self._particles = [Net(self.interface_dim, self.hidden_dim, self.out_dim) for _ in range(self.nr_nets)]
pass
else:
pass
# Particle Weight Update
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
range(self.nr_nets)] # [nr_net*[nr_weights]]
for particles, weights in zip(self._particles, weights_per_net):
particles.apply_weights(weights)
return self._particles
@property
def particle_weights(self):
all_weights = [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
weights_per_net = [torch.cat([layer[i] for layer in all_weights]).view(-1, 1) for i in
range(self.nr_nets)] # [nr_net*[nr_weights]]
return weights_per_net
def replace_weights_by_particles(self, particles):
assert len(particles) == self.nr_nets
with torch.no_grad():
# Particle Weight Update
all_weights = [list(particle.parameters()) for particle in particles]
all_weights = [torch.cat(x).view(-1) for x in zip(*all_weights)]
# [layer.view(-1, int(len(layer) / self.nr_nets)) for layer in self.weights]
for weights, parameters in zip(all_weights, self.parameters()):
parameters[:] = weights[:]
return self
def __call__(self, x):
for indices, diag_shapes, weights in zip(self.indices, self.diag_shapes, self.weights):
s = torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
x = torch.sparse.mm(s, x)
return x
def to(self, *args, **kwargs):
super(SparseLayer, self).to(*args, **kwargs)
self.sparse_sub_layer = [sparse_sub_layer.to(*args, **kwargs) for sparse_sub_layer in self.sparse_sub_layer]
return self
def test_sparse_layer():
net = SparseLayer(500) #50 parallel nets
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
# optimizer = torch.optim.SGD([layer.coalesce().values() for layer in net.sparse_sub_layer], lr=0.004, momentum=0.9)
for train_iteration in trange(1000):
optimizer.zero_grad()
X, Y = net.get_self_train_inputs_and_targets()
out = net(X)
loss = loss_fn(out, Y)
# print("X:", X.shape, "Y:", Y.shape)
# print("OUT", out.shape)
# print("LOSS", loss.item())
loss.backward()
optimizer.step()
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
print(f"identity_fn after {train_iteration + 1} self-train epochs: {counter}")
def embed_batch(x, repeat_dim):
# x of shape (batchsize, flat_img_dim)
# (batchsize, flat_img_dim, 1)
x = x.unsqueeze(-1)
# (batchsize, flat_img_dim, encoding_dim*repeat_dim)
# torch.sparse_coo_tensor(indices, weights, diag_shapes, requires_grad=True, device=x.device)
return torch.cat((torch.zeros(x.shape[0], x.shape[1], 4, device=x.device), x), dim=2).repeat(1, 1, repeat_dim)
def embed_vector(x, repeat_dim):
# x of shape [flat_img_dim]
x = x.unsqueeze(-1) # (flat_img_dim, 1)
# (flat_img_dim, encoding_dim*repeat_dim)
return torch.cat((torch.zeros(x.shape[0], 4), x), dim=1).repeat(1,repeat_dim)
class SparseNetwork(nn.Module):
def __init__(self, input_dim, depth, width, out, residual_skip=True, activation=None,
weight_interface=5, weight_hidden_size=2, weight_output_size=1
):
super(SparseNetwork, self).__init__()
self.residual_skip = residual_skip
self.input_dim = input_dim
self.depth_dim = depth
self.hidden_dim = width
self.out_dim = out
self.activation = activation
self.first_layer = SparseLayer(self.input_dim * self.hidden_dim,
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
self.last_layer = SparseLayer(self.hidden_dim * self.out_dim,
interface=weight_interface, width=weight_hidden_size, out=weight_output_size)
self.hidden_layers = nn.ModuleList([
SparseLayer(self.hidden_dim * self.hidden_dim,
interface=weight_interface, width=weight_hidden_size, out=weight_output_size
) for _ in range(self.depth_dim - 2)])
def __call__(self, x):
tensor = self.sparse_layer_forward(x, self.first_layer)
if self.activation:
tensor = self.activation(tensor)
for nl_idx, network_layer in enumerate(self.hidden_layers):
# Sparse Layer pass
tensor = self.sparse_layer_forward(tensor, network_layer)
if self.activation:
tensor = self.activation(tensor)
if nl_idx % 2 == 0 and self.residual_skip:
residual = tensor.clone()
if nl_idx % 2 == 1 and self.residual_skip:
# noinspection PyUnboundLocalVariable
tensor += residual
tensor = self.sparse_layer_forward(tensor, self.last_layer, view_dim=self.out_dim)
return tensor
def sparse_layer_forward(self, x, sparse_layer, view_dim=None):
view_dim = view_dim if view_dim else self.hidden_dim
# batch pass (one by one, sparse bmm doesn't support grad)
if len(x.shape) > 1:
embedded_inpt = embed_batch(x, sparse_layer.nr_nets)
# [batchsize, hidden*inpt_dim, feature_dim]
x = torch.stack([sparse_layer(inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1) for inpt in
embedded_inpt])
# vector
else:
embedded_inpt = embed_vector(x, sparse_layer.nr_nets)
x = sparse_layer(embedded_inpt.T).sum(dim=1).view(view_dim, x.shape[1]).sum(dim=1)
return x
@property
def particles(self):
#particles = []
#particles.extend(self.first_layer.particles)
#for layer in self.hidden_layers:
# particles.extend(layer.particles)
#particles.extend(self.last_layer.particles)
return (x for y in (self.first_layer.particles,
*(l.particles for l in self.hidden_layers),
self.last_layer.particles) for x in y)
@property
def particle_weights(self):
return (x for y in self.sparselayers for x in y.particle_weights)
def to(self, *args, **kwargs):
super(SparseNetwork, self).to(*args, **kwargs)
self.first_layer = self.first_layer.to(*args, **kwargs)
self.last_layer = self.last_layer.to(*args, **kwargs)
self.hidden_layers = nn.ModuleList([hidden_layer.to(*args, **kwargs) for hidden_layer in self.hidden_layers])
return self
@property
def sparselayers(self):
return (x for x in (self.first_layer, *self.hidden_layers, self.last_layer))
def combined_self_train(self, optimizer, reduction='mean'):
losses = []
for layer in self.sparselayers:
optimizer.zero_grad()
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
loss = F.mse_loss(output, target_data, reduction=reduction)
losses.append(loss.detach())
loss.backward()
optimizer.step()
return sum(losses)
def replace_weights_by_particles(self, particles):
particles = list(particles)
for layer in self.sparselayers:
layer.replace_weights_by_particles(particles[:layer.nr_nets])
del particles[:layer.nr_nets]
return self
def test_sparse_net():
utility_transforms = Compose([ Resize((10, 10)), ToTensor(), Flatten(start_dim=0)])
data_path = Path('data')
WORKER = 8
BATCHSIZE = 10
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset = MNIST(str(data_path), transform=utility_transforms)
d = DataLoader(dataset, batch_size=BATCHSIZE, shuffle=True, drop_last=True, num_workers=WORKER)
data_dim = np.prod(dataset[0][0].shape)
metanet = SparseNetwork(data_dim, depth=3, width=5, out=10)
batchx, batchy = next(iter(d))
metanet(batchx)
print(f"identity_fn after {train_iteration+1} self-train iterations: {sum([torch.allclose(out[i], Y[i], rtol=0, atol=epsilon) for i in range(net.nr_nets)])}/{net.nr_nets}")
def test_sparse_net_sef_train():
net = SparseNetwork(30, 5, 6, 10)
epochs = 1000
if True:
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for _ in trange(epochs):
_ = net.combined_self_train(optimizer)
else:
optimizer_dict = {
key: torch.optim.SGD(layer.parameters(), lr=0.004, momentum=0.9) for key, layer in enumerate(net.sparselayers)
}
loss_fn = torch.nn.MSELoss(reduction="mean")
for layer, optim in zip(net.sparselayers, optimizer_dict.values()):
for _ in trange(epochs):
optim.zero_grad()
x, target_data = layer.get_self_train_inputs_and_targets()
output = layer(x)
loss = loss_fn(output, target_data)
loss.backward()
optim.step()
# is each of the networks self-replicating?
counter = defaultdict(lambda: 0)
id_functions = functionalities_test.test_for_fixpoints(counter, list(net.particles))
counter = dict(counter)
print(f"identity_fn after {epochs} self-train epochs: {counter}")
def test_manual_for_loop():
nr_nets = 500
nets = [Net(5,2,1) for _ in range(nr_nets)]
loss_fn = torch.nn.MSELoss(reduction="sum")
rounds = 1000
for net in tqdm(nets):
optimizer = torch.optim.SGD(net.parameters(), lr=0.004, momentum=0.9)
for i in range(rounds):
optimizer.zero_grad()
input_data = net.input_weight_matrix()
target_data = net.create_target_weights(input_data)
output = net(input_data)
loss = loss_fn(output, target_data)
loss.backward()
optimizer.step()
sum([is_identity_function(net) for net in nets])
if __name__ == '__main__':
# test_sparse_layer()
test_sparse_net_sef_train()
# test_sparse_net()
# for comparison
# test_manual_for_loop()