Done: AE, VAE, AAE

ToDo: Double AAE, Visualization
All Modularized
This commit is contained in:
Si11ium 2019-08-16 22:39:24 +02:00
parent 265c900f33
commit f2cb9b7c42
12 changed files with 409 additions and 266 deletions

View File

@ -1,8 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4"> <module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager"> <component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" /> <content url="file://$MODULE_DIR$">
<orderEntry type="inheritedJdk" /> <excludeFolder url="file://$MODULE_DIR$/data" />
</content>
<orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />
</component> </component>
<component name="PyDocumentationSettings"> <component name="PyDocumentationSettings">

97
.idea/workspace.xml generated
View File

@ -1,16 +1,16 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<project version="4"> <project version="4">
<component name="ChangeListManager"> <component name="ChangeListManager">
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment=""> <list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="Lightning integration basic ae, dataloaders and dataset">
<change afterPath="$PROJECT_DIR$/.idea/dictionaries/illium.xml" afterDir="false" /> <change afterPath="$PROJECT_DIR$/networks/adverserial_auto_encoder.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/.idea/other.xml" afterDir="false" />
<change afterPath="$PROJECT_DIR$/.idea/vcs.xml" afterDir="false" />
<change afterPath="$PROJECT_DIR$/basic_ae_lightning_torch.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/data/dataset.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/networks/basic_ae.py" afterDir="false" />
<change afterPath="$PROJECT_DIR$/networks/modules.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/dataset.py" beforeDir="false" afterPath="$PROJECT_DIR$/dataset.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/networks/basic_ae.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/auto_encoder.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/networks/basic_vae.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/variational_auto_encoder.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/networks/modules.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/modules.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/run_basic_ae.py" beforeDir="false" afterPath="$PROJECT_DIR$/run_models.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/run_basic_vae.py" beforeDir="false" />
</list> </list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" /> <option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" /> <option name="SHOW_DIALOG" value="false" />
@ -34,6 +34,7 @@
<property name="ASKED_ADD_EXTERNAL_FILES" value="true" /> <property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" /> <property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
<property name="WebServerToolWindowFactoryState" value="false" /> <property name="WebServerToolWindowFactoryState" value="false" />
<property name="last_opened_file_path" value="$PROJECT_DIR$/networks" />
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" /> <property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
<property name="settings.editor.selected.configurable" value="pyconsole" /> <property name="settings.editor.selected.configurable" value="pyconsole" />
</component> </component>
@ -46,6 +47,16 @@
</option> </option>
<option name="myShowDebugConsoleByDefault" value="true" /> <option name="myShowDebugConsoleByDefault" value="true" />
</component> </component>
<component name="RecentsManager">
<key name="CopyFile.RECENT_KEYS">
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\networks" />
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\viz" />
</key>
<key name="MoveFile.RECENT_KEYS">
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\data\processed" />
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch" />
</key>
</component>
<component name="RunDashboard"> <component name="RunDashboard">
<option name="ruleStates"> <option name="ruleStates">
<list> <list>
@ -58,7 +69,7 @@
</list> </list>
</option> </option>
</component> </component>
<component name="RunManager" selected="Python.basic_ae_lightning_torch"> <component name="RunManager" selected="Python.run_models">
<configuration default="true" type="PythonConfigurationType" factoryName="Python"> <configuration default="true" type="PythonConfigurationType" factoryName="Python">
<module name="ae_toolbox_torch" /> <module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" /> <option name="INTERPRETER_OPTIONS" value="" />
@ -81,20 +92,17 @@
<option name="INPUT_FILE" value="" /> <option name="INPUT_FILE" value="" />
<method v="2" /> <method v="2" />
</configuration> </configuration>
<configuration name="basic_ae_lightning_torch" type="PythonConfigurationType" factoryName="Python" temporary="true"> <configuration name="run_basic_ae" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="ae_toolbox_torch" /> <module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" /> <option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" /> <option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" /> <option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" /> <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" /> <option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" /> <option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" /> <option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" /> <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/basic_ae_lightning_torch.py" /> <option name="SCRIPT_NAME" value="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\run_models.py" />
<option name="PARAMETERS" value="" /> <option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" /> <option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" /> <option name="EMULATE_TERMINAL" value="false" />
@ -103,20 +111,17 @@
<option name="INPUT_FILE" value="" /> <option name="INPUT_FILE" value="" />
<method v="2" /> <method v="2" />
</configuration> </configuration>
<configuration name="dataset" type="PythonConfigurationType" factoryName="Python" temporary="true"> <configuration name="run_models" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="ae_toolbox_torch" /> <module name="ae_toolbox_torch" />
<option name="INTERPRETER_OPTIONS" value="" /> <option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" /> <option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" /> <option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/data" /> <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" /> <option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" /> <option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" /> <option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" /> <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/data/dataset.py" /> <option name="SCRIPT_NAME" value="$PROJECT_DIR$/run_models.py" />
<option name="PARAMETERS" value="" /> <option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="true" /> <option name="SHOW_COMMAND_LINE" value="true" />
<option name="EMULATE_TERMINAL" value="false" /> <option name="EMULATE_TERMINAL" value="false" />
@ -125,10 +130,14 @@
<option name="INPUT_FILE" value="" /> <option name="INPUT_FILE" value="" />
<method v="2" /> <method v="2" />
</configuration> </configuration>
<list>
<item itemvalue="Python.run_basic_ae" />
<item itemvalue="Python.run_models" />
</list>
<recent_temporary> <recent_temporary>
<list> <list>
<item itemvalue="Python.basic_ae_lightning_torch" /> <item itemvalue="Python.run_models" />
<item itemvalue="Python.dataset" /> <item itemvalue="Python.run_basic_ae" />
</list> </list>
</recent_temporary> </recent_temporary>
</component> </component>
@ -145,7 +154,23 @@
<workItem from="1564587420277" duration="6891000" /> <workItem from="1564587420277" duration="6891000" />
<workItem from="1565364574595" duration="1092000" /> <workItem from="1565364574595" duration="1092000" />
<workItem from="1565592214301" duration="53660000" /> <workItem from="1565592214301" duration="53660000" />
<workItem from="1565793671730" duration="30373000" />
</task> </task>
<task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
<created>1565793753423</created>
<option name="number" value="00001" />
<option name="presentableId" value="LOCAL-00001" />
<option name="project" value="LOCAL" />
<updated>1565793753423</updated>
</task>
<task id="LOCAL-00002" summary="Lightning integration basic ae, dataloaders and dataset">
<created>1565958589041</created>
<option name="number" value="00002" />
<option name="presentableId" value="LOCAL-00002" />
<option name="project" value="LOCAL" />
<updated>1565958589041</updated>
</task>
<option name="localTasksCounter" value="3" />
<servers /> <servers />
</component> </component>
<component name="TypeScriptGeneratedFilesManager"> <component name="TypeScriptGeneratedFilesManager">
@ -164,8 +189,34 @@
</map> </map>
</option> </option>
</component> </component>
<component name="VcsManagerConfiguration">
<MESSAGE value="Lightning integration basic ae, dataloaders and dataset" />
<option name="LAST_COMMIT_MESSAGE" value="Lightning integration basic ae, dataloaders and dataset" />
</component>
<component name="XDebuggerManager">
<breakpoint-manager>
<breakpoints>
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
<url>file://$PROJECT_DIR$/run_models.py</url>
<line>20</line>
<option name="timeStamp" value="27" />
</line-breakpoint>
</breakpoints>
<default-breakpoints>
<breakpoint type="python-exception">
<properties notifyOnTerminate="true" exception="BaseException">
<option name="notifyOnTerminate" value="true" />
</properties>
</breakpoint>
</default-breakpoints>
</breakpoint-manager>
</component>
<component name="com.intellij.coverage.CoverageDataManagerImpl"> <component name="com.intellij.coverage.CoverageDataManagerImpl">
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565790288699" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" /> <SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565937164457" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1565987843914" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" /> <SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
</component> </component>
</project> </project>

View File

@ -125,7 +125,7 @@ class DataContainer(AbstractDataset):
def process(self, filepath): def process(self, filepath):
dataDict = defaultdict(list) dataDict = defaultdict(list)
total_lines = len(open(filepath,'r').readlines()) total_lines = len(open(filepath, 'r').readlines())
with open(filepath, 'r') as f: with open(filepath, 'r') as f:
delimiter = ',' delimiter = ','
# Separate the header # Separate the header
@ -176,7 +176,6 @@ class Trajectories(Dataset):
data[:, 2:] = transformation(data[:, 2:]) data[:, 2:] = transformation(data[:, 2:])
return data return data
def __iter__(self): def __iter__(self):
for i in range(len(self)): for i in range(len(self)):
yield self[i] yield self[i]

View File

@ -0,0 +1,66 @@
from networks.auto_encoder import AutoEncoder
from torch.nn.functional import mse_loss
from torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoid
from torch.distributions import Normal
from networks.modules import *
import torch
class AdversarialAutoEncoder(AutoEncoder):
def __init__(self, *args, **kwargs):
super(AdversarialAutoEncoder, self).__init__(*args, **kwargs)
self.discriminator = Discriminator(self.latent_dim, self.dataParams)
def forward(self, batch):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z = self.encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
x_hat = self.decoder(z_repeatet)
return z, x_hat
class AdversarialAELightningOverrides:
def forward(self, x):
return self.network.forward(x)
def training_step(self, batch, _, optimizer_i):
if optimizer_i == 0:
# ---------------------
# Train Discriminator
# ---------------------
# latent_fake, reconstruction
latent_fake, _ = self.network.forward(batch)
latent_real = self.normal.sample(latent_fake.shape)
# Evaluate the input
d_real_prediction = self.network.discriminator.forward(latent_real)
d_fake_prediction = self.network.discriminator.forward(latent_fake)
# Train the discriminator
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape))
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
# Calculate the mean over both the real and the fake acc
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
return {'loss': d_loss}
elif optimizer_i == 1:
# ---------------------
# Train AutoEncoder
# ---------------------
# z, x_hat
_, batch_hat = self.forward(batch)
loss = mse_loss(batch, batch_hat)
return {'loss': loss}
else:
raise RuntimeError('This should not have happened, catch me if u can.')
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

45
networks/auto_encoder.py Normal file
View File

@ -0,0 +1,45 @@
from .modules import *
from torch.nn.functional import mse_loss
from torch import Tensor
#######################
# Basic AE-Implementation
class AutoEncoder(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(AutoEncoder, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
def forward(self, batch: Tensor):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z = self.encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
x_hat = self.decoder(z_repeatet)
return z, x_hat
class AutoEncoderLightningOverrides:
def forward(self, x):
return self.network.forward(x)
def training_step(self, x, batch_nb):
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
return {'loss': loss}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,73 +0,0 @@
from torch.nn import Sequential, Linear, GRU, ReLU, Tanh
from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class BasicAE(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(BasicAE, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = self._build_encoder()
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
def _build_encoder(self):
encoder = Sequential(
Linear(6, 100, bias=True),
ReLU(),
Linear(100, 10, bias=True),
ReLU()
)
gru = Sequential(
TimeDistributed(encoder),
GRU(10, 10, batch_first=True),
RNNOutputFilter(only_last=True),
Linear(10, self.latent_dim)
)
return gru
def _build_decoder(self, out_shape):
decoder = Sequential(
Linear(10, 100, bias=True),
ReLU(),
Linear(100, out_shape, bias=True),
Tanh()
)
gru = Sequential(
GRU(self.latent_dim, 10,batch_first=True),
RNNOutputFilter(),
TimeDistributed(decoder)
)
return gru
def forward(self, batch: torch.Tensor):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z = self.encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
x_hat = self.decoder(z)
return z, x_hat
class AELightningOverrides:
def training_step(self, x, batch_nb):
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
return {'loss': loss}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,81 +0,0 @@
from torch.nn import Sequential, Linear, GRU, ReLU
from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class BasicVAE(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(BasicVAE, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = self._build_encoder()
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim)
def _build_encoder(self):
linear_stack = Sequential(
Linear(6, 100, bias=True),
ReLU(),
Linear(100, 10, bias=True),
ReLU()
)
encoder = Sequential(
TimeDistributed(linear_stack),
GRU(10, 10, batch_first=True),
RNNOutputFilter(only_last=True),
)
return encoder
def reparameterize(self, mu, logvar):
# Lambda Layer, add gaussian noise
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def _build_decoder(self, out_shape):
decoder = Sequential(
Linear(10, 100, bias=True),
ReLU(),
Linear(100, out_shape, bias=True),
ReLU()
)
sequential_decoder = Sequential(
GRU(self.latent_dim, 10, batch_first=True),
RNNOutputFilter(),
TimeDistributed(decoder)
)
return sequential_decoder
def forward(self, batch):
encoding = self.encoder(batch)
mu_logvar = self.mu(encoding), self.logvar(encoding)
z = self.reparameterize(*mu_logvar)
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
x_hat = self.decoder(repeat(z))
return (x_hat, *mu_logvar)
class VAELightningOverrides:
def training_step(self, x, batch_nb):
x_hat, logvar, mu = self.forward(x)
BCE = mse_loss(x_hat, x, reduction='mean')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return {'loss': BCE + KLD}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,6 +1,6 @@
import torch import torch
import pytorch_lightning as pl import pytorch_lightning as pl
from torch.nn import Module from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
@ -85,9 +85,10 @@ class Repeater(Module):
self.shape = shape self.shape = shape
def forward(self, x: torch.Tensor): def forward(self, x: torch.Tensor):
x.unsqueeze_(-2) x = x.unsqueeze(-2)
return x.expand(self.shape) return x.expand(self.shape)
class RNNOutputFilter(Module): class RNNOutputFilter(Module):
def __init__(self, return_output=True, only_last=False): def __init__(self, return_output=True, only_last=False):
@ -101,5 +102,108 @@ class RNNOutputFilter(Module):
return out if not self.only_last else out[:, -1, :] return out if not self.only_last else out[:, -1, :]
#######################
# Network Modules
# Generators, Decoders, Encoders, Discriminators
class Discriminator(Module):
def __init__(self, latent_dim, dataParams, dropout=.0, activation=ReLU):
super(Discriminator, self).__init__()
self.dataParams = dataParams
self.latent_dim = latent_dim
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
self.lout = Linear(self.dataParams['features']*20, 1)
self.dropout = Dropout(dropout)
self.activation = activation()
self.sigmoid = Sigmoid()
def forward(self, x, **kwargs):
tensor = self.l1(x)
tensor = self.dropout(self.activation(tensor))
tensor = self.l2(tensor)
tensor = self.dropout(self.activation(tensor))
tensor = self.lout(tensor)
tensor = self.sigmoid(tensor)
return tensor
class DecoderLinearStack(Module):
def __init__(self, out_shape):
super(DecoderLinearStack, self).__init__()
self.l1 = Linear(10, 100, bias=True)
self.l2 = Linear(100, out_shape, bias=True)
self.activation = ReLU()
self.activation_out = Tanh()
def forward(self, x):
tensor = self.l1(x)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
tensor = self.activation_out(tensor)
return tensor
class EncoderLinearStack(Module):
def __init__(self):
super(EncoderLinearStack, self).__init__()
self.l1 = Linear(6, 100, bias=True)
self.l2 = Linear(100, 10, bias=True)
self.activation = ReLU()
def forward(self, x):
tensor = self.l1(x)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
tensor = self.activation(tensor)
return tensor
class Encoder(Module):
def __init__(self, lat_dim, variational=False):
self.lat_dim = lat_dim
self.variational = variational
super(Encoder, self).__init__()
self.l_stack = TimeDistributed(EncoderLinearStack())
self.gru = GRU(10, 10, batch_first=True)
self.filter = RNNOutputFilter(only_last=True)
if variational:
self.mu = Linear(10, self.lat_dim)
self.logvar = Linear(10, self.lat_dim)
else:
self.lat_dim_layer = Linear(10, self.lat_dim)
def forward(self, x):
tensor = self.l_stack(x)
tensor = self.gru(tensor)
tensor = self.filter(tensor)
if self.variational:
tensor = self.mu(tensor), self.logvar(tensor)
else:
tensor = self.lat_dim_layer(tensor)
return tensor
class Decoder(Module):
def __init__(self, latent_dim, *args, variational=False):
self.variational = variational
super(Decoder, self).__init__()
self.g = GRU(latent_dim, 10, batch_first=True)
self.filter = RNNOutputFilter()
self.l_stack = TimeDistributed(DecoderLinearStack(*args))
pass
def forward(self, x):
tensor = self.g(x)
tensor = self.filter(tensor)
tensor = self.l_stack(tensor)
return tensor
if __name__ == '__main__': if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module') raise PermissionError('Get out of here - never run this module')

View File

@ -0,0 +1,53 @@
from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class VariationalAutoEncoder(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(VariationalAutoEncoder, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = Encoder(self.latent_dim, variational=True)
self.decoder = Decoder(self.latent_dim, self.dataParams['features'], variational=True)
@staticmethod
def reparameterize(mu, logvar):
# Lambda Layer, add gaussian noise
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def forward(self, batch):
mu, logvar = self.encoder(batch)
z = self.reparameterize(mu, logvar)
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
x_hat = self.decoder(repeat(z))
return x_hat, mu, logvar
class VariationalAutoEncoderLightningOverrides:
def forward(self, x):
return self.network.forward(x)
def training_step(self, x, _):
x_hat, logvar, mu = self.forward(x)
BCE = mse_loss(x_hat, x, reduction='mean')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return {'loss': BCE + KLD}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -1,41 +0,0 @@
from networks.basic_ae import BasicAE, AELightningOverrides
from networks.modules import LightningModule
from torch.optim import Adam
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
from torch.nn import BatchNorm1d
from pytorch_lightning import Trainer
class AEModel(AELightningOverrides, LightningModule):
def __init__(self, dataParams: dict):
super(AEModel, self).__init__()
self.dataParams = dataParams
# noinspection PyUnresolvedReferences
self.network = BasicAE(self.dataParams)
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
def forward(self, x):
return self.network.forward(x)
if __name__ == '__main__':
features = 6
ae = AEModel(
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
)
trainer = Trainer()
trainer.fit(ae)

View File

@ -1,42 +0,0 @@
from networks.basic_vae import BasicVAE, VAELightningOverrides
from networks.modules import LightningModule
import pytorch_lightning as pl
from torch.nn.functional import mse_loss
from torch.optim import Adam
import torch
from torch.nn import BatchNorm1d
from torch.utils.data import DataLoader
from dataset import DataContainer
from pytorch_lightning import Trainer
class AEModel(VAELightningOverrides, LightningModule):
def __init__(self, dataParams: dict):
super(AEModel, self).__init__()
self.dataParams = dataParams
# noinspection PyUnresolvedReferences
self.network = BasicVAE(self.dataParams)
def forward(self, x):
return self.network.forward(x)
def configure_optimizers(self):
# ToDo: Where do i get the Paramers from?
return [Adam(self.parameters(), lr=0.02)]
@pl.data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
if __name__ == '__main__':
features = 6
ae = AEModel(
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
)
trainer = Trainer()
trainer.fit(ae)

60
run_models.py Normal file
View File

@ -0,0 +1,60 @@
from networks.auto_encoder import *
from networks.variational_auto_encoder import *
from networks.adverserial_auto_encoder import *
from networks.modules import LightningModule
from torch.optim import Adam
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
from torch.nn import BatchNorm1d
from pytorch_lightning import Trainer
# ToDo: How to implement this better?
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
class Model(VariationalAutoEncoderLightningOverrides, LightningModule):
def __init__(self, dataParams: dict):
super(Model, self).__init__()
self.dataParams = dataParams
self.network = VariationalAutoEncoder(self.dataParams)
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
def __init__(self, dataParams: dict):
super(AdversarialModel, self).__init__()
self.dataParams = dataParams
self.normal = Normal(0, 1)
self.network = AdversarialAutoEncoder(self.dataParams)
pass
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam(self.network.discriminator.parameters(), lr=0.02),
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
[]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
if __name__ == '__main__':
features = 6
ae = AdversarialModel(
dataParams=dict(refresh=False, size=5, step=5,
features=features, transforms=[BatchNorm1d(features)]
)
)
trainer = Trainer()
trainer.fit(ae)