Done: AE, VAE, AAE
ToDo: Double AAE, Visualization All Modularized
This commit is contained in:
parent
265c900f33
commit
f2cb9b7c42
6
.idea/ae_toolbox_torch.iml
generated
6
.idea/ae_toolbox_torch.iml
generated
@ -1,8 +1,10 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8"?>
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
<module type="PYTHON_MODULE" version="4">
|
<module type="PYTHON_MODULE" version="4">
|
||||||
<component name="NewModuleRootManager">
|
<component name="NewModuleRootManager">
|
||||||
<content url="file://$MODULE_DIR$" />
|
<content url="file://$MODULE_DIR$">
|
||||||
<orderEntry type="inheritedJdk" />
|
<excludeFolder url="file://$MODULE_DIR$/data" />
|
||||||
|
</content>
|
||||||
|
<orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
|
||||||
<orderEntry type="sourceFolder" forTests="false" />
|
<orderEntry type="sourceFolder" forTests="false" />
|
||||||
</component>
|
</component>
|
||||||
<component name="PyDocumentationSettings">
|
<component name="PyDocumentationSettings">
|
||||||
|
97
.idea/workspace.xml
generated
97
.idea/workspace.xml
generated
@ -1,16 +1,16 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8"?>
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
<project version="4">
|
<project version="4">
|
||||||
<component name="ChangeListManager">
|
<component name="ChangeListManager">
|
||||||
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="">
|
<list default="true" id="5955480a-c876-43d5-afd7-8717f51f413e" name="Default Changelist" comment="Lightning integration basic ae, dataloaders and dataset">
|
||||||
<change afterPath="$PROJECT_DIR$/.idea/dictionaries/illium.xml" afterDir="false" />
|
<change afterPath="$PROJECT_DIR$/networks/adverserial_auto_encoder.py" afterDir="false" />
|
||||||
<change afterPath="$PROJECT_DIR$/.idea/other.xml" afterDir="false" />
|
|
||||||
<change afterPath="$PROJECT_DIR$/.idea/vcs.xml" afterDir="false" />
|
|
||||||
<change afterPath="$PROJECT_DIR$/basic_ae_lightning_torch.py" afterDir="false" />
|
|
||||||
<change afterPath="$PROJECT_DIR$/data/dataset.py" afterDir="false" />
|
|
||||||
<change afterPath="$PROJECT_DIR$/networks/basic_ae.py" afterDir="false" />
|
|
||||||
<change afterPath="$PROJECT_DIR$/networks/modules.py" afterDir="false" />
|
|
||||||
<change beforePath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" afterDir="false" />
|
<change beforePath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/ae_toolbox_torch.iml" afterDir="false" />
|
||||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/dataset.py" beforeDir="false" afterPath="$PROJECT_DIR$/dataset.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/basic_ae.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/auto_encoder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/basic_vae.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/variational_auto_encoder.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/networks/modules.py" beforeDir="false" afterPath="$PROJECT_DIR$/networks/modules.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/run_basic_ae.py" beforeDir="false" afterPath="$PROJECT_DIR$/run_models.py" afterDir="false" />
|
||||||
|
<change beforePath="$PROJECT_DIR$/run_basic_vae.py" beforeDir="false" />
|
||||||
</list>
|
</list>
|
||||||
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
|
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
|
||||||
<option name="SHOW_DIALOG" value="false" />
|
<option name="SHOW_DIALOG" value="false" />
|
||||||
@ -34,6 +34,7 @@
|
|||||||
<property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
|
<property name="ASKED_ADD_EXTERNAL_FILES" value="true" />
|
||||||
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
||||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||||
|
<property name="last_opened_file_path" value="$PROJECT_DIR$/networks" />
|
||||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||||
<property name="settings.editor.selected.configurable" value="pyconsole" />
|
<property name="settings.editor.selected.configurable" value="pyconsole" />
|
||||||
</component>
|
</component>
|
||||||
@ -46,6 +47,16 @@
|
|||||||
</option>
|
</option>
|
||||||
<option name="myShowDebugConsoleByDefault" value="true" />
|
<option name="myShowDebugConsoleByDefault" value="true" />
|
||||||
</component>
|
</component>
|
||||||
|
<component name="RecentsManager">
|
||||||
|
<key name="CopyFile.RECENT_KEYS">
|
||||||
|
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\networks" />
|
||||||
|
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\viz" />
|
||||||
|
</key>
|
||||||
|
<key name="MoveFile.RECENT_KEYS">
|
||||||
|
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\data\processed" />
|
||||||
|
<recent name="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch" />
|
||||||
|
</key>
|
||||||
|
</component>
|
||||||
<component name="RunDashboard">
|
<component name="RunDashboard">
|
||||||
<option name="ruleStates">
|
<option name="ruleStates">
|
||||||
<list>
|
<list>
|
||||||
@ -58,7 +69,7 @@
|
|||||||
</list>
|
</list>
|
||||||
</option>
|
</option>
|
||||||
</component>
|
</component>
|
||||||
<component name="RunManager" selected="Python.basic_ae_lightning_torch">
|
<component name="RunManager" selected="Python.run_models">
|
||||||
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
|
<configuration default="true" type="PythonConfigurationType" factoryName="Python">
|
||||||
<module name="ae_toolbox_torch" />
|
<module name="ae_toolbox_torch" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
@ -81,20 +92,17 @@
|
|||||||
<option name="INPUT_FILE" value="" />
|
<option name="INPUT_FILE" value="" />
|
||||||
<method v="2" />
|
<method v="2" />
|
||||||
</configuration>
|
</configuration>
|
||||||
<configuration name="basic_ae_lightning_torch" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
<configuration name="run_basic_ae" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||||
<module name="ae_toolbox_torch" />
|
<module name="ae_toolbox_torch" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
<option name="PARENT_ENVS" value="true" />
|
<option name="PARENT_ENVS" value="true" />
|
||||||
<envs>
|
|
||||||
<env name="PYTHONUNBUFFERED" value="1" />
|
|
||||||
</envs>
|
|
||||||
<option name="SDK_HOME" value="" />
|
<option name="SDK_HOME" value="" />
|
||||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||||
<option name="IS_MODULE_SDK" value="true" />
|
<option name="IS_MODULE_SDK" value="true" />
|
||||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/basic_ae_lightning_torch.py" />
|
<option name="SCRIPT_NAME" value="C:\Users\illium\Google Drive\LMU\Research\ae_toolbox_torch\run_models.py" />
|
||||||
<option name="PARAMETERS" value="" />
|
<option name="PARAMETERS" value="" />
|
||||||
<option name="SHOW_COMMAND_LINE" value="true" />
|
<option name="SHOW_COMMAND_LINE" value="true" />
|
||||||
<option name="EMULATE_TERMINAL" value="false" />
|
<option name="EMULATE_TERMINAL" value="false" />
|
||||||
@ -103,20 +111,17 @@
|
|||||||
<option name="INPUT_FILE" value="" />
|
<option name="INPUT_FILE" value="" />
|
||||||
<method v="2" />
|
<method v="2" />
|
||||||
</configuration>
|
</configuration>
|
||||||
<configuration name="dataset" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
<configuration name="run_models" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||||
<module name="ae_toolbox_torch" />
|
<module name="ae_toolbox_torch" />
|
||||||
<option name="INTERPRETER_OPTIONS" value="" />
|
<option name="INTERPRETER_OPTIONS" value="" />
|
||||||
<option name="PARENT_ENVS" value="true" />
|
<option name="PARENT_ENVS" value="true" />
|
||||||
<envs>
|
|
||||||
<env name="PYTHONUNBUFFERED" value="1" />
|
|
||||||
</envs>
|
|
||||||
<option name="SDK_HOME" value="" />
|
<option name="SDK_HOME" value="" />
|
||||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/data" />
|
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||||
<option name="IS_MODULE_SDK" value="true" />
|
<option name="IS_MODULE_SDK" value="true" />
|
||||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/data/dataset.py" />
|
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/run_models.py" />
|
||||||
<option name="PARAMETERS" value="" />
|
<option name="PARAMETERS" value="" />
|
||||||
<option name="SHOW_COMMAND_LINE" value="true" />
|
<option name="SHOW_COMMAND_LINE" value="true" />
|
||||||
<option name="EMULATE_TERMINAL" value="false" />
|
<option name="EMULATE_TERMINAL" value="false" />
|
||||||
@ -125,10 +130,14 @@
|
|||||||
<option name="INPUT_FILE" value="" />
|
<option name="INPUT_FILE" value="" />
|
||||||
<method v="2" />
|
<method v="2" />
|
||||||
</configuration>
|
</configuration>
|
||||||
|
<list>
|
||||||
|
<item itemvalue="Python.run_basic_ae" />
|
||||||
|
<item itemvalue="Python.run_models" />
|
||||||
|
</list>
|
||||||
<recent_temporary>
|
<recent_temporary>
|
||||||
<list>
|
<list>
|
||||||
<item itemvalue="Python.basic_ae_lightning_torch" />
|
<item itemvalue="Python.run_models" />
|
||||||
<item itemvalue="Python.dataset" />
|
<item itemvalue="Python.run_basic_ae" />
|
||||||
</list>
|
</list>
|
||||||
</recent_temporary>
|
</recent_temporary>
|
||||||
</component>
|
</component>
|
||||||
@ -145,7 +154,23 @@
|
|||||||
<workItem from="1564587420277" duration="6891000" />
|
<workItem from="1564587420277" duration="6891000" />
|
||||||
<workItem from="1565364574595" duration="1092000" />
|
<workItem from="1565364574595" duration="1092000" />
|
||||||
<workItem from="1565592214301" duration="53660000" />
|
<workItem from="1565592214301" duration="53660000" />
|
||||||
|
<workItem from="1565793671730" duration="30373000" />
|
||||||
</task>
|
</task>
|
||||||
|
<task id="LOCAL-00001" summary="Lightning integration basic ae, dataloaders and dataset">
|
||||||
|
<created>1565793753423</created>
|
||||||
|
<option name="number" value="00001" />
|
||||||
|
<option name="presentableId" value="LOCAL-00001" />
|
||||||
|
<option name="project" value="LOCAL" />
|
||||||
|
<updated>1565793753423</updated>
|
||||||
|
</task>
|
||||||
|
<task id="LOCAL-00002" summary="Lightning integration basic ae, dataloaders and dataset">
|
||||||
|
<created>1565958589041</created>
|
||||||
|
<option name="number" value="00002" />
|
||||||
|
<option name="presentableId" value="LOCAL-00002" />
|
||||||
|
<option name="project" value="LOCAL" />
|
||||||
|
<updated>1565958589041</updated>
|
||||||
|
</task>
|
||||||
|
<option name="localTasksCounter" value="3" />
|
||||||
<servers />
|
<servers />
|
||||||
</component>
|
</component>
|
||||||
<component name="TypeScriptGeneratedFilesManager">
|
<component name="TypeScriptGeneratedFilesManager">
|
||||||
@ -164,8 +189,34 @@
|
|||||||
</map>
|
</map>
|
||||||
</option>
|
</option>
|
||||||
</component>
|
</component>
|
||||||
|
<component name="VcsManagerConfiguration">
|
||||||
|
<MESSAGE value="Lightning integration basic ae, dataloaders and dataset" />
|
||||||
|
<option name="LAST_COMMIT_MESSAGE" value="Lightning integration basic ae, dataloaders and dataset" />
|
||||||
|
</component>
|
||||||
|
<component name="XDebuggerManager">
|
||||||
|
<breakpoint-manager>
|
||||||
|
<breakpoints>
|
||||||
|
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
||||||
|
<url>file://$PROJECT_DIR$/run_models.py</url>
|
||||||
|
<line>20</line>
|
||||||
|
<option name="timeStamp" value="27" />
|
||||||
|
</line-breakpoint>
|
||||||
|
</breakpoints>
|
||||||
|
<default-breakpoints>
|
||||||
|
<breakpoint type="python-exception">
|
||||||
|
<properties notifyOnTerminate="true" exception="BaseException">
|
||||||
|
<option name="notifyOnTerminate" value="true" />
|
||||||
|
</properties>
|
||||||
|
</breakpoint>
|
||||||
|
</default-breakpoints>
|
||||||
|
</breakpoint-manager>
|
||||||
|
</component>
|
||||||
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565790288699" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning_torch.coverage" NAME="basic_ae_lightning_torch Coverage Results" MODIFIED="1565937164457" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_ae_lightning.coverage" NAME="basic_ae_lightning Coverage Results" MODIFIED="1565956491159" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$basic_vae_lightning.coverage" NAME="basic_vae_lightning Coverage Results" MODIFIED="1565955311009" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_basic_ae.coverage" NAME="run_basic_ae Coverage Results" MODIFIED="1565966122607" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$run_models.coverage" NAME="run_models Coverage Results" MODIFIED="1565987843914" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||||
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
|
<SUITE FILE_PATH="coverage/ae_toolbox_torch$dataset.coverage" NAME="dataset Coverage Results" MODIFIED="1565772669750" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/data" />
|
||||||
</component>
|
</component>
|
||||||
</project>
|
</project>
|
@ -125,7 +125,7 @@ class DataContainer(AbstractDataset):
|
|||||||
|
|
||||||
def process(self, filepath):
|
def process(self, filepath):
|
||||||
dataDict = defaultdict(list)
|
dataDict = defaultdict(list)
|
||||||
total_lines = len(open(filepath,'r').readlines())
|
total_lines = len(open(filepath, 'r').readlines())
|
||||||
with open(filepath, 'r') as f:
|
with open(filepath, 'r') as f:
|
||||||
delimiter = ','
|
delimiter = ','
|
||||||
# Separate the header
|
# Separate the header
|
||||||
@ -176,7 +176,6 @@ class Trajectories(Dataset):
|
|||||||
data[:, 2:] = transformation(data[:, 2:])
|
data[:, 2:] = transformation(data[:, 2:])
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
for i in range(len(self)):
|
for i in range(len(self)):
|
||||||
yield self[i]
|
yield self[i]
|
||||||
|
66
networks/adverserial_auto_encoder.py
Normal file
66
networks/adverserial_auto_encoder.py
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
from networks.auto_encoder import AutoEncoder
|
||||||
|
from torch.nn.functional import mse_loss
|
||||||
|
from torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoid
|
||||||
|
from torch.distributions import Normal
|
||||||
|
from networks.modules import *
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class AdversarialAutoEncoder(AutoEncoder):
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(AdversarialAutoEncoder, self).__init__(*args, **kwargs)
|
||||||
|
self.discriminator = Discriminator(self.latent_dim, self.dataParams)
|
||||||
|
|
||||||
|
def forward(self, batch):
|
||||||
|
# Encoder
|
||||||
|
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||||
|
z = self.encoder(batch)
|
||||||
|
# Decoder
|
||||||
|
# First repeat the data accordingly to the batch size
|
||||||
|
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||||
|
x_hat = self.decoder(z_repeatet)
|
||||||
|
return z, x_hat
|
||||||
|
|
||||||
|
|
||||||
|
class AdversarialAELightningOverrides:
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
def training_step(self, batch, _, optimizer_i):
|
||||||
|
if optimizer_i == 0:
|
||||||
|
# ---------------------
|
||||||
|
# Train Discriminator
|
||||||
|
# ---------------------
|
||||||
|
# latent_fake, reconstruction
|
||||||
|
latent_fake, _ = self.network.forward(batch)
|
||||||
|
latent_real = self.normal.sample(latent_fake.shape)
|
||||||
|
|
||||||
|
# Evaluate the input
|
||||||
|
d_real_prediction = self.network.discriminator.forward(latent_real)
|
||||||
|
d_fake_prediction = self.network.discriminator.forward(latent_fake)
|
||||||
|
|
||||||
|
# Train the discriminator
|
||||||
|
d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape))
|
||||||
|
d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape))
|
||||||
|
|
||||||
|
# Calculate the mean over both the real and the fake acc
|
||||||
|
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
|
||||||
|
return {'loss': d_loss}
|
||||||
|
|
||||||
|
elif optimizer_i == 1:
|
||||||
|
# ---------------------
|
||||||
|
# Train AutoEncoder
|
||||||
|
# ---------------------
|
||||||
|
# z, x_hat
|
||||||
|
_, batch_hat = self.forward(batch)
|
||||||
|
loss = mse_loss(batch, batch_hat)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
raise PermissionError('Get out of here - never run this module')
|
45
networks/auto_encoder.py
Normal file
45
networks/auto_encoder.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
from .modules import *
|
||||||
|
from torch.nn.functional import mse_loss
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
#######################
|
||||||
|
# Basic AE-Implementation
|
||||||
|
class AutoEncoder(Module, ABC):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
|
def __init__(self, dataParams, **kwargs):
|
||||||
|
super(AutoEncoder, self).__init__()
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||||
|
self.encoder = Encoder(self.latent_dim)
|
||||||
|
self.decoder = Decoder(self.latent_dim, self.dataParams['features'])
|
||||||
|
|
||||||
|
def forward(self, batch: Tensor):
|
||||||
|
# Encoder
|
||||||
|
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||||
|
z = self.encoder(batch)
|
||||||
|
# Decoder
|
||||||
|
# First repeat the data accordingly to the batch size
|
||||||
|
z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||||
|
x_hat = self.decoder(z_repeatet)
|
||||||
|
return z, x_hat
|
||||||
|
|
||||||
|
|
||||||
|
class AutoEncoderLightningOverrides:
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
def training_step(self, x, batch_nb):
|
||||||
|
# z, x_hat
|
||||||
|
_, x_hat = self.forward(x)
|
||||||
|
loss = mse_loss(x, x_hat)
|
||||||
|
return {'loss': loss}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
raise PermissionError('Get out of here - never run this module')
|
@ -1,73 +0,0 @@
|
|||||||
from torch.nn import Sequential, Linear, GRU, ReLU, Tanh
|
|
||||||
from .modules import *
|
|
||||||
from torch.nn.functional import mse_loss
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#######################
|
|
||||||
# Basic AE-Implementation
|
|
||||||
class BasicAE(Module, ABC):
|
|
||||||
|
|
||||||
@property
|
|
||||||
def name(self):
|
|
||||||
return self.__class__.__name__
|
|
||||||
|
|
||||||
def __init__(self, dataParams, **kwargs):
|
|
||||||
super(BasicAE, self).__init__()
|
|
||||||
self.dataParams = dataParams
|
|
||||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
|
||||||
self.encoder = self._build_encoder()
|
|
||||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
|
||||||
|
|
||||||
def _build_encoder(self):
|
|
||||||
encoder = Sequential(
|
|
||||||
Linear(6, 100, bias=True),
|
|
||||||
ReLU(),
|
|
||||||
Linear(100, 10, bias=True),
|
|
||||||
ReLU()
|
|
||||||
)
|
|
||||||
gru = Sequential(
|
|
||||||
TimeDistributed(encoder),
|
|
||||||
GRU(10, 10, batch_first=True),
|
|
||||||
RNNOutputFilter(only_last=True),
|
|
||||||
Linear(10, self.latent_dim)
|
|
||||||
)
|
|
||||||
return gru
|
|
||||||
|
|
||||||
def _build_decoder(self, out_shape):
|
|
||||||
decoder = Sequential(
|
|
||||||
Linear(10, 100, bias=True),
|
|
||||||
ReLU(),
|
|
||||||
Linear(100, out_shape, bias=True),
|
|
||||||
Tanh()
|
|
||||||
)
|
|
||||||
|
|
||||||
gru = Sequential(
|
|
||||||
GRU(self.latent_dim, 10,batch_first=True),
|
|
||||||
RNNOutputFilter(),
|
|
||||||
TimeDistributed(decoder)
|
|
||||||
)
|
|
||||||
return gru
|
|
||||||
|
|
||||||
def forward(self, batch: torch.Tensor):
|
|
||||||
# Encoder
|
|
||||||
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
|
||||||
z = self.encoder(batch)
|
|
||||||
# Decoder
|
|
||||||
# First repeat the data accordingly to the batch size
|
|
||||||
z = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
|
||||||
x_hat = self.decoder(z)
|
|
||||||
return z, x_hat
|
|
||||||
|
|
||||||
|
|
||||||
class AELightningOverrides:
|
|
||||||
|
|
||||||
def training_step(self, x, batch_nb):
|
|
||||||
# z, x_hat
|
|
||||||
_, x_hat = self.forward(x)
|
|
||||||
loss = mse_loss(x, x_hat)
|
|
||||||
return {'loss': loss}
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
raise PermissionError('Get out of here - never run this module')
|
|
@ -1,81 +0,0 @@
|
|||||||
from torch.nn import Sequential, Linear, GRU, ReLU
|
|
||||||
from .modules import *
|
|
||||||
from torch.nn.functional import mse_loss
|
|
||||||
|
|
||||||
|
|
||||||
#######################
|
|
||||||
# Basic AE-Implementation
|
|
||||||
class BasicVAE(Module, ABC):
|
|
||||||
|
|
||||||
@property
|
|
||||||
def name(self):
|
|
||||||
return self.__class__.__name__
|
|
||||||
|
|
||||||
def __init__(self, dataParams, **kwargs):
|
|
||||||
super(BasicVAE, self).__init__()
|
|
||||||
self.dataParams = dataParams
|
|
||||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
|
||||||
self.encoder = self._build_encoder()
|
|
||||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
|
||||||
self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim)
|
|
||||||
|
|
||||||
def _build_encoder(self):
|
|
||||||
linear_stack = Sequential(
|
|
||||||
Linear(6, 100, bias=True),
|
|
||||||
ReLU(),
|
|
||||||
Linear(100, 10, bias=True),
|
|
||||||
ReLU()
|
|
||||||
)
|
|
||||||
encoder = Sequential(
|
|
||||||
TimeDistributed(linear_stack),
|
|
||||||
GRU(10, 10, batch_first=True),
|
|
||||||
RNNOutputFilter(only_last=True),
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
def reparameterize(self, mu, logvar):
|
|
||||||
# Lambda Layer, add gaussian noise
|
|
||||||
std = torch.exp(0.5*logvar)
|
|
||||||
eps = torch.randn_like(std)
|
|
||||||
return mu + eps*std
|
|
||||||
|
|
||||||
def _build_decoder(self, out_shape):
|
|
||||||
decoder = Sequential(
|
|
||||||
Linear(10, 100, bias=True),
|
|
||||||
ReLU(),
|
|
||||||
Linear(100, out_shape, bias=True),
|
|
||||||
ReLU()
|
|
||||||
)
|
|
||||||
|
|
||||||
sequential_decoder = Sequential(
|
|
||||||
GRU(self.latent_dim, 10, batch_first=True),
|
|
||||||
RNNOutputFilter(),
|
|
||||||
TimeDistributed(decoder)
|
|
||||||
)
|
|
||||||
return sequential_decoder
|
|
||||||
|
|
||||||
def forward(self, batch):
|
|
||||||
encoding = self.encoder(batch)
|
|
||||||
mu_logvar = self.mu(encoding), self.logvar(encoding)
|
|
||||||
z = self.reparameterize(*mu_logvar)
|
|
||||||
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
|
|
||||||
x_hat = self.decoder(repeat(z))
|
|
||||||
return (x_hat, *mu_logvar)
|
|
||||||
|
|
||||||
|
|
||||||
class VAELightningOverrides:
|
|
||||||
|
|
||||||
def training_step(self, x, batch_nb):
|
|
||||||
x_hat, logvar, mu = self.forward(x)
|
|
||||||
BCE = mse_loss(x_hat, x, reduction='mean')
|
|
||||||
|
|
||||||
# see Appendix B from VAE paper:
|
|
||||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
|
||||||
# https://arxiv.org/abs/1312.6114
|
|
||||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
|
||||||
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
|
||||||
return {'loss': BCE + KLD}
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
raise PermissionError('Get out of here - never run this module')
|
|
@ -1,6 +1,6 @@
|
|||||||
import torch
|
import torch
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
from torch.nn import Module
|
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
@ -85,9 +85,10 @@ class Repeater(Module):
|
|||||||
self.shape = shape
|
self.shape = shape
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
def forward(self, x: torch.Tensor):
|
||||||
x.unsqueeze_(-2)
|
x = x.unsqueeze(-2)
|
||||||
return x.expand(self.shape)
|
return x.expand(self.shape)
|
||||||
|
|
||||||
|
|
||||||
class RNNOutputFilter(Module):
|
class RNNOutputFilter(Module):
|
||||||
|
|
||||||
def __init__(self, return_output=True, only_last=False):
|
def __init__(self, return_output=True, only_last=False):
|
||||||
@ -101,5 +102,108 @@ class RNNOutputFilter(Module):
|
|||||||
return out if not self.only_last else out[:, -1, :]
|
return out if not self.only_last else out[:, -1, :]
|
||||||
|
|
||||||
|
|
||||||
|
#######################
|
||||||
|
# Network Modules
|
||||||
|
# Generators, Decoders, Encoders, Discriminators
|
||||||
|
class Discriminator(Module):
|
||||||
|
|
||||||
|
def __init__(self, latent_dim, dataParams, dropout=.0, activation=ReLU):
|
||||||
|
super(Discriminator, self).__init__()
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.latent_dim = latent_dim
|
||||||
|
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
|
||||||
|
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
|
||||||
|
self.lout = Linear(self.dataParams['features']*20, 1)
|
||||||
|
self.dropout = Dropout(dropout)
|
||||||
|
self.activation = activation()
|
||||||
|
self.sigmoid = Sigmoid()
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
tensor = self.l1(x)
|
||||||
|
tensor = self.dropout(self.activation(tensor))
|
||||||
|
tensor = self.l2(tensor)
|
||||||
|
tensor = self.dropout(self.activation(tensor))
|
||||||
|
tensor = self.lout(tensor)
|
||||||
|
tensor = self.sigmoid(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
class DecoderLinearStack(Module):
|
||||||
|
|
||||||
|
def __init__(self, out_shape):
|
||||||
|
super(DecoderLinearStack, self).__init__()
|
||||||
|
self.l1 = Linear(10, 100, bias=True)
|
||||||
|
self.l2 = Linear(100, out_shape, bias=True)
|
||||||
|
self.activation = ReLU()
|
||||||
|
self.activation_out = Tanh()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
tensor = self.l1(x)
|
||||||
|
tensor = self.activation(tensor)
|
||||||
|
tensor = self.l2(tensor)
|
||||||
|
tensor = self.activation_out(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderLinearStack(Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(EncoderLinearStack, self).__init__()
|
||||||
|
self.l1 = Linear(6, 100, bias=True)
|
||||||
|
self.l2 = Linear(100, 10, bias=True)
|
||||||
|
self.activation = ReLU()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
tensor = self.l1(x)
|
||||||
|
tensor = self.activation(tensor)
|
||||||
|
tensor = self.l2(tensor)
|
||||||
|
tensor = self.activation(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(Module):
|
||||||
|
|
||||||
|
def __init__(self, lat_dim, variational=False):
|
||||||
|
self.lat_dim = lat_dim
|
||||||
|
self.variational = variational
|
||||||
|
|
||||||
|
super(Encoder, self).__init__()
|
||||||
|
self.l_stack = TimeDistributed(EncoderLinearStack())
|
||||||
|
self.gru = GRU(10, 10, batch_first=True)
|
||||||
|
self.filter = RNNOutputFilter(only_last=True)
|
||||||
|
if variational:
|
||||||
|
self.mu = Linear(10, self.lat_dim)
|
||||||
|
self.logvar = Linear(10, self.lat_dim)
|
||||||
|
else:
|
||||||
|
self.lat_dim_layer = Linear(10, self.lat_dim)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
tensor = self.l_stack(x)
|
||||||
|
tensor = self.gru(tensor)
|
||||||
|
tensor = self.filter(tensor)
|
||||||
|
if self.variational:
|
||||||
|
tensor = self.mu(tensor), self.logvar(tensor)
|
||||||
|
else:
|
||||||
|
tensor = self.lat_dim_layer(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(Module):
|
||||||
|
|
||||||
|
def __init__(self, latent_dim, *args, variational=False):
|
||||||
|
self.variational = variational
|
||||||
|
super(Decoder, self).__init__()
|
||||||
|
self.g = GRU(latent_dim, 10, batch_first=True)
|
||||||
|
self.filter = RNNOutputFilter()
|
||||||
|
self.l_stack = TimeDistributed(DecoderLinearStack(*args))
|
||||||
|
pass
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
tensor = self.g(x)
|
||||||
|
tensor = self.filter(tensor)
|
||||||
|
tensor = self.l_stack(tensor)
|
||||||
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
raise PermissionError('Get out of here - never run this module')
|
raise PermissionError('Get out of here - never run this module')
|
||||||
|
53
networks/variational_auto_encoder.py
Normal file
53
networks/variational_auto_encoder.py
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
from .modules import *
|
||||||
|
from torch.nn.functional import mse_loss
|
||||||
|
|
||||||
|
|
||||||
|
#######################
|
||||||
|
# Basic AE-Implementation
|
||||||
|
class VariationalAutoEncoder(Module, ABC):
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self):
|
||||||
|
return self.__class__.__name__
|
||||||
|
|
||||||
|
def __init__(self, dataParams, **kwargs):
|
||||||
|
super(VariationalAutoEncoder, self).__init__()
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||||
|
self.encoder = Encoder(self.latent_dim, variational=True)
|
||||||
|
self.decoder = Decoder(self.latent_dim, self.dataParams['features'], variational=True)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def reparameterize(mu, logvar):
|
||||||
|
# Lambda Layer, add gaussian noise
|
||||||
|
std = torch.exp(0.5*logvar)
|
||||||
|
eps = torch.randn_like(std)
|
||||||
|
return mu + eps*std
|
||||||
|
|
||||||
|
def forward(self, batch):
|
||||||
|
mu, logvar = self.encoder(batch)
|
||||||
|
z = self.reparameterize(mu, logvar)
|
||||||
|
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
|
||||||
|
x_hat = self.decoder(repeat(z))
|
||||||
|
return x_hat, mu, logvar
|
||||||
|
|
||||||
|
|
||||||
|
class VariationalAutoEncoderLightningOverrides:
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.network.forward(x)
|
||||||
|
|
||||||
|
def training_step(self, x, _):
|
||||||
|
x_hat, logvar, mu = self.forward(x)
|
||||||
|
BCE = mse_loss(x_hat, x, reduction='mean')
|
||||||
|
|
||||||
|
# see Appendix B from VAE paper:
|
||||||
|
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||||
|
# https://arxiv.org/abs/1312.6114
|
||||||
|
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||||
|
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||||
|
return {'loss': BCE + KLD}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
raise PermissionError('Get out of here - never run this module')
|
@ -1,41 +0,0 @@
|
|||||||
from networks.basic_ae import BasicAE, AELightningOverrides
|
|
||||||
from networks.modules import LightningModule
|
|
||||||
from torch.optim import Adam
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from pytorch_lightning import data_loader
|
|
||||||
from dataset import DataContainer
|
|
||||||
|
|
||||||
from torch.nn import BatchNorm1d
|
|
||||||
from pytorch_lightning import Trainer
|
|
||||||
|
|
||||||
|
|
||||||
class AEModel(AELightningOverrides, LightningModule):
|
|
||||||
|
|
||||||
def __init__(self, dataParams: dict):
|
|
||||||
super(AEModel, self).__init__()
|
|
||||||
self.dataParams = dataParams
|
|
||||||
# noinspection PyUnresolvedReferences
|
|
||||||
self.network = BasicAE(self.dataParams)
|
|
||||||
|
|
||||||
|
|
||||||
def configure_optimizers(self):
|
|
||||||
return [Adam(self.parameters(), lr=0.02)]
|
|
||||||
|
|
||||||
|
|
||||||
@data_loader
|
|
||||||
def tng_dataloader(self):
|
|
||||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.network.forward(x)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
features = 6
|
|
||||||
ae = AEModel(
|
|
||||||
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
|
|
||||||
)
|
|
||||||
|
|
||||||
trainer = Trainer()
|
|
||||||
trainer.fit(ae)
|
|
@ -1,42 +0,0 @@
|
|||||||
from networks.basic_vae import BasicVAE, VAELightningOverrides
|
|
||||||
from networks.modules import LightningModule
|
|
||||||
import pytorch_lightning as pl
|
|
||||||
from torch.nn.functional import mse_loss
|
|
||||||
from torch.optim import Adam
|
|
||||||
import torch
|
|
||||||
from torch.nn import BatchNorm1d
|
|
||||||
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from dataset import DataContainer
|
|
||||||
|
|
||||||
from pytorch_lightning import Trainer
|
|
||||||
|
|
||||||
|
|
||||||
class AEModel(VAELightningOverrides, LightningModule):
|
|
||||||
|
|
||||||
def __init__(self, dataParams: dict):
|
|
||||||
super(AEModel, self).__init__()
|
|
||||||
self.dataParams = dataParams
|
|
||||||
# noinspection PyUnresolvedReferences
|
|
||||||
self.network = BasicVAE(self.dataParams)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.network.forward(x)
|
|
||||||
|
|
||||||
def configure_optimizers(self):
|
|
||||||
# ToDo: Where do i get the Paramers from?
|
|
||||||
return [Adam(self.parameters(), lr=0.02)]
|
|
||||||
|
|
||||||
@pl.data_loader
|
|
||||||
def tng_dataloader(self):
|
|
||||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
features = 6
|
|
||||||
ae = AEModel(
|
|
||||||
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
|
|
||||||
)
|
|
||||||
|
|
||||||
trainer = Trainer()
|
|
||||||
trainer.fit(ae)
|
|
60
run_models.py
Normal file
60
run_models.py
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
from networks.auto_encoder import *
|
||||||
|
from networks.variational_auto_encoder import *
|
||||||
|
from networks.adverserial_auto_encoder import *
|
||||||
|
from networks.modules import LightningModule
|
||||||
|
from torch.optim import Adam
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from pytorch_lightning import data_loader
|
||||||
|
from dataset import DataContainer
|
||||||
|
|
||||||
|
from torch.nn import BatchNorm1d
|
||||||
|
from pytorch_lightning import Trainer
|
||||||
|
|
||||||
|
|
||||||
|
# ToDo: How to implement this better?
|
||||||
|
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||||
|
class Model(VariationalAutoEncoderLightningOverrides, LightningModule):
|
||||||
|
|
||||||
|
def __init__(self, dataParams: dict):
|
||||||
|
super(Model, self).__init__()
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.network = VariationalAutoEncoder(self.dataParams)
|
||||||
|
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return [Adam(self.parameters(), lr=0.02)]
|
||||||
|
|
||||||
|
@data_loader
|
||||||
|
def tng_dataloader(self):
|
||||||
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||||
|
|
||||||
|
|
||||||
|
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||||
|
|
||||||
|
def __init__(self, dataParams: dict):
|
||||||
|
super(AdversarialModel, self).__init__()
|
||||||
|
self.dataParams = dataParams
|
||||||
|
self.normal = Normal(0, 1)
|
||||||
|
self.network = AdversarialAutoEncoder(self.dataParams)
|
||||||
|
pass
|
||||||
|
|
||||||
|
# This is Fucked up, why do i need to put an additional empty list here?
|
||||||
|
def configure_optimizers(self):
|
||||||
|
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
||||||
|
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
|
||||||
|
[]
|
||||||
|
|
||||||
|
@data_loader
|
||||||
|
def tng_dataloader(self):
|
||||||
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
features = 6
|
||||||
|
ae = AdversarialModel(
|
||||||
|
dataParams=dict(refresh=False, size=5, step=5,
|
||||||
|
features=features, transforms=[BatchNorm1d(features)]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = Trainer()
|
||||||
|
trainer.fit(ae)
|
Loading…
x
Reference in New Issue
Block a user