ae_toolbox_torch/networks/basic_vae.py

82 lines
2.5 KiB
Python

from torch.nn import Sequential, Linear, GRU, ReLU
from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class BasicVAE(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(BasicVAE, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = self._build_encoder()
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim)
def _build_encoder(self):
linear_stack = Sequential(
Linear(6, 100, bias=True),
ReLU(),
Linear(100, 10, bias=True),
ReLU()
)
encoder = Sequential(
TimeDistributed(linear_stack),
GRU(10, 10, batch_first=True),
RNNOutputFilter(only_last=True),
)
return encoder
def reparameterize(self, mu, logvar):
# Lambda Layer, add gaussian noise
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def _build_decoder(self, out_shape):
decoder = Sequential(
Linear(10, 100, bias=True),
ReLU(),
Linear(100, out_shape, bias=True),
ReLU()
)
sequential_decoder = Sequential(
GRU(self.latent_dim, 10, batch_first=True),
RNNOutputFilter(),
TimeDistributed(decoder)
)
return sequential_decoder
def forward(self, batch):
encoding = self.encoder(batch)
mu_logvar = self.mu(encoding), self.logvar(encoding)
z = self.reparameterize(*mu_logvar)
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
x_hat = self.decoder(repeat(z))
return (x_hat, *mu_logvar)
class VAELightningOverrides:
def training_step(self, x, batch_nb):
x_hat, logvar, mu = self.forward(x)
BCE = mse_loss(x_hat, x, reduction='mean')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return {'loss': BCE + KLD}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')