from torch.nn import Sequential, Linear, GRU, ReLU from .modules import * from torch.nn.functional import mse_loss ####################### # Basic AE-Implementation class BasicVAE(Module, ABC): @property def name(self): return self.__class__.__name__ def __init__(self, dataParams, **kwargs): super(BasicVAE, self).__init__() self.dataParams = dataParams self.latent_dim = kwargs.get('latent_dim', 2) self.encoder = self._build_encoder() self.decoder = self._build_decoder(out_shape=self.dataParams['features']) self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim) def _build_encoder(self): linear_stack = Sequential( Linear(6, 100, bias=True), ReLU(), Linear(100, 10, bias=True), ReLU() ) encoder = Sequential( TimeDistributed(linear_stack), GRU(10, 10, batch_first=True), RNNOutputFilter(only_last=True), ) return encoder def reparameterize(self, mu, logvar): # Lambda Layer, add gaussian noise std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def _build_decoder(self, out_shape): decoder = Sequential( Linear(10, 100, bias=True), ReLU(), Linear(100, out_shape, bias=True), ReLU() ) sequential_decoder = Sequential( GRU(self.latent_dim, 10, batch_first=True), RNNOutputFilter(), TimeDistributed(decoder) ) return sequential_decoder def forward(self, batch): encoding = self.encoder(batch) mu_logvar = self.mu(encoding), self.logvar(encoding) z = self.reparameterize(*mu_logvar) repeat = Repeater((batch.shape[0], self.dataParams['size'], -1)) x_hat = self.decoder(repeat(z)) return (x_hat, *mu_logvar) class VAELightningOverrides: def training_step(self, x, batch_nb): x_hat, logvar, mu = self.forward(x) BCE = mse_loss(x_hat, x, reduction='mean') # see Appendix B from VAE paper: # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return {'loss': BCE + KLD} if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')