74 lines
2.0 KiB
Python

from torch.nn import Sequential, Linear, GRU, ReLU, Tanh
from .modules import *
from torch.nn.functional import mse_loss
#######################
# Basic AE-Implementation
class BasicAE(Module, ABC):
@property
def name(self):
return self.__class__.__name__
def __init__(self, dataParams, **kwargs):
super(BasicAE, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = self._build_encoder()
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
def _build_encoder(self):
encoder = Sequential(
Linear(6, 100, bias=True),
ReLU(),
Linear(100, 10, bias=True),
ReLU()
)
gru = Sequential(
TimeDistributed(encoder),
GRU(10, 10, batch_first=True),
RNNOutputFilter(only_last=True),
Linear(10, self.latent_dim)
)
return gru
def _build_decoder(self, out_shape):
decoder = Sequential(
Linear(10, 100, bias=True),
ReLU(),
Linear(100, out_shape, bias=True),
Tanh()
)
gru = Sequential(
GRU(self.latent_dim, 10,batch_first=True),
RNNOutputFilter(),
TimeDistributed(decoder)
)
return gru
def forward(self, batch: torch.Tensor):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z = self.encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
x_hat = self.decoder(z)
return z, x_hat
class AELightningOverrides:
def training_step(self, x, batch_nb):
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
return {'loss': loss}
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')