42 lines
1.1 KiB
Python
42 lines
1.1 KiB
Python
from networks.basic_ae import BasicAE, AELightningOverrides
|
|
from networks.modules import LightningModule
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from pytorch_lightning import data_loader
|
|
from dataset import DataContainer
|
|
|
|
from torch.nn import BatchNorm1d
|
|
from pytorch_lightning import Trainer
|
|
|
|
|
|
class AEModel(AELightningOverrides, LightningModule):
|
|
|
|
def __init__(self, dataParams: dict):
|
|
super(AEModel, self).__init__()
|
|
self.dataParams = dataParams
|
|
# noinspection PyUnresolvedReferences
|
|
self.network = BasicAE(self.dataParams)
|
|
|
|
|
|
def configure_optimizers(self):
|
|
return [Adam(self.parameters(), lr=0.02)]
|
|
|
|
|
|
@data_loader
|
|
def tng_dataloader(self):
|
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
|
|
|
|
|
def forward(self, x):
|
|
return self.network.forward(x)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
features = 6
|
|
ae = AEModel(
|
|
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
|
|
)
|
|
|
|
trainer = Trainer()
|
|
trainer.fit(ae)
|