ae_toolbox_torch/run_basic_ae.py

42 lines
1.1 KiB
Python

from networks.basic_ae import BasicAE, AELightningOverrides
from networks.modules import LightningModule
from torch.optim import Adam
from torch.utils.data import DataLoader
from pytorch_lightning import data_loader
from dataset import DataContainer
from torch.nn import BatchNorm1d
from pytorch_lightning import Trainer
class AEModel(AELightningOverrides, LightningModule):
def __init__(self, dataParams: dict):
super(AEModel, self).__init__()
self.dataParams = dataParams
# noinspection PyUnresolvedReferences
self.network = BasicAE(self.dataParams)
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
@data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
def forward(self, x):
return self.network.forward(x)
if __name__ == '__main__':
features = 6
ae = AEModel(
dataParams=dict(refresh=False, size=5, step=5, features=features, transforms=[BatchNorm1d(features)])
)
trainer = Trainer()
trainer.fit(ae)