Fixed the Model classes, Visualization
This commit is contained in:
@ -1,21 +1,17 @@
|
||||
# TODO: THIS
|
||||
import seaborn as sb
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from pytorch_lightning import data_loader
|
||||
from dataset import DataContainer
|
||||
from collections import defaultdict
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
from sklearn.manifold import TSNE
|
||||
from sklearn.decomposition import PCA
|
||||
|
||||
import seaborn as sns; sns.set()
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from run_models import *
|
||||
|
||||
sns.set()
|
||||
|
||||
|
||||
def search_for_weights(folder):
|
||||
while not os.path.exists(folder):
|
||||
if len(os.path.split(folder)) >= 50:
|
||||
@ -32,6 +28,8 @@ def search_for_weights(folder):
|
||||
|
||||
|
||||
def load_and_predict(path_like_element):
|
||||
if any([x.name.endswith('.png') for x in os.scandir(os.path.dirname(path_like_element))]):
|
||||
return
|
||||
|
||||
# Define Loop to search for models and folder with visualizations
|
||||
model = globals()[path_like_element.path.split(os.sep)[-3]]
|
||||
@ -46,36 +44,50 @@ def load_and_predict(path_like_element):
|
||||
pretrained_model.eval()
|
||||
pretrained_model.freeze()
|
||||
|
||||
# Load the data for prediction
|
||||
dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
|
||||
with torch.no_grad():
|
||||
|
||||
# Do the inference
|
||||
prediction_dict = defaultdict(list)
|
||||
for i in tqdm(range(len(dataset)), total=len(dataset)):
|
||||
p_X = pretrained_model(dataset[i].unsqueeze(0))
|
||||
for idx in range(len(p_X) - 1):
|
||||
prediction_dict[idx].append(p_X[idx])
|
||||
# Load the data for prediction
|
||||
dataset = DataContainer(os.path.join(os.pardir, 'data'), 5, 5)
|
||||
|
||||
# Do the inference
|
||||
prediction_dict = defaultdict(list)
|
||||
for i in tqdm(range(len(dataset)), total=len(dataset)):
|
||||
p_X = pretrained_model(dataset[i].unsqueeze(0))
|
||||
for idx in range(len(p_X) - 1):
|
||||
prediction_dict[idx].append(p_X[idx])
|
||||
|
||||
predictions = [torch.cat(prediction).detach().numpy() for prediction in prediction_dict.values()]
|
||||
for prediction in predictions:
|
||||
viz_latent(prediction)
|
||||
for idx, prediction in enumerate(predictions):
|
||||
plot, _ = viz_latent(prediction)
|
||||
plot.savefig(os.path.join(os.path.dirname(path_like_element), f'latent_space_{idx}.png'))
|
||||
|
||||
|
||||
def viz_latent(prediction):
|
||||
def viz_latent(prediction, title=f'Latent Space '):
|
||||
if prediction.shape[-1] <= 1:
|
||||
raise ValueError('How did this happen?')
|
||||
elif prediction.shape[-1] == 2:
|
||||
ax = sns.scatterplot(x=prediction[:, 0], y=prediction[:, 1])
|
||||
plt.show()
|
||||
return ax
|
||||
try:
|
||||
plt.show()
|
||||
except:
|
||||
pass
|
||||
return ax.figure, (ax)
|
||||
else:
|
||||
fig, axs = plt.subplots(ncols=2)
|
||||
predictions_pca = PCA(n_components=2)
|
||||
predictions_tsne = TSNE(n_components=2)
|
||||
pca_plot = sns.scatterplot(x=predictions_pca[:, 0], y=predictions_pca[:, 1], ax=axs[0])
|
||||
tsne_plot = sns.scatterplot(x=predictions_tsne[:, 0], y=predictions_tsne[:, 1], ax=axs[1])
|
||||
plt.show()
|
||||
return fig, axs, pca_plot, tsne_plot
|
||||
plots = []
|
||||
for idx, dim_reducer in enumerate([PCA, TSNE]):
|
||||
predictions_reduced = dim_reducer(n_components=2).fit_transform(prediction)
|
||||
plot = sns.scatterplot(x=predictions_reduced[:, 0], y=predictions_reduced[:, 1],
|
||||
ax=axs[idx])
|
||||
plot.set_title(dim_reducer.__name__)
|
||||
plots.append(plot)
|
||||
|
||||
try:
|
||||
plt.show()
|
||||
except:
|
||||
pass
|
||||
return fig, (*plots, )
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
path = 'output'
|
||||
|
Reference in New Issue
Block a user