Lightning integration basic ae, dataloaders and dataset
This commit is contained in:
0
networks/__init__.py
Normal file
0
networks/__init__.py
Normal file
@ -1,52 +1,73 @@
|
||||
from torch.nn import Sequential, Linear, GRU
|
||||
from data.dataset import DataContainer
|
||||
|
||||
from torch.nn import Sequential, Linear, GRU, ReLU, Tanh
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class BasicAE(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(BasicAE, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = self._build_encoder()
|
||||
self.decoder = self._build_decoder()
|
||||
|
||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
||||
|
||||
def _build_encoder(self):
|
||||
encoder = Sequential()
|
||||
encoder.add_module(f'EncoderLinear_{1}', Linear(6, 10, bias=True))
|
||||
encoder.add_module(f'EncoderLinear_{2}', Linear(10, 10, bias=True))
|
||||
gru = Sequential()
|
||||
gru.add_module('Encoder', TimeDistributed(encoder))
|
||||
gru.add_module('GRU', GRU(10, self.latent_dim))
|
||||
encoder = Sequential(
|
||||
Linear(6, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, 10, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
gru = Sequential(
|
||||
TimeDistributed(encoder),
|
||||
GRU(10, 10, batch_first=True),
|
||||
RNNOutputFilter(only_last=True),
|
||||
Linear(10, self.latent_dim)
|
||||
)
|
||||
return gru
|
||||
|
||||
def _build_decoder(self):
|
||||
decoder = Sequential()
|
||||
decoder.add_module(f'DecoderLinear_{1}', Linear(10, 10, bias=True))
|
||||
decoder.add_module(f'DecoderLinear_{2}', Linear(10, self.dataParams['features'], bias=True))
|
||||
def _build_decoder(self, out_shape):
|
||||
decoder = Sequential(
|
||||
Linear(10, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, out_shape, bias=True),
|
||||
Tanh()
|
||||
)
|
||||
|
||||
gru = Sequential()
|
||||
# There needs to be ab propper bat
|
||||
gru.add_module('Repeater', Repeater((1, self.dataParams['size'], -1)))
|
||||
gru.add_module('GRU', GRU(self.latent_dim, 10))
|
||||
gru.add_module('GRU Filter', RNNOutputFilter())
|
||||
gru.add_module('Decoder', TimeDistributed(decoder))
|
||||
gru = Sequential(
|
||||
GRU(self.latent_dim, 10,batch_first=True),
|
||||
RNNOutputFilter(),
|
||||
TimeDistributed(decoder)
|
||||
)
|
||||
return gru
|
||||
|
||||
def forward(self, batch):
|
||||
batch_size = batch.shape[0]
|
||||
self.decoder.Repeater.shape = (batch_size, ) + self.decoder.Repeater.shape[-2:]
|
||||
def forward(self, batch: torch.Tensor):
|
||||
# Encoder
|
||||
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
|
||||
outputs, _ = self.encoder(batch)
|
||||
z = outputs[:, -1]
|
||||
z = self.encoder(batch)
|
||||
# Decoder
|
||||
# First repeat the data accordingly to the batch size
|
||||
z = Repeater((batch.shape[0], self.dataParams['size'], -1))(z)
|
||||
x_hat = self.decoder(z)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AELightningOverrides:
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
# z, x_hat
|
||||
_, x_hat = self.forward(x)
|
||||
loss = mse_loss(x, x_hat)
|
||||
return {'loss': loss}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
||||
|
81
networks/basic_vae.py
Normal file
81
networks/basic_vae.py
Normal file
@ -0,0 +1,81 @@
|
||||
from torch.nn import Sequential, Linear, GRU, ReLU
|
||||
from .modules import *
|
||||
from torch.nn.functional import mse_loss
|
||||
|
||||
|
||||
#######################
|
||||
# Basic AE-Implementation
|
||||
class BasicVAE(Module, ABC):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, dataParams, **kwargs):
|
||||
super(BasicVAE, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = kwargs.get('latent_dim', 2)
|
||||
self.encoder = self._build_encoder()
|
||||
self.decoder = self._build_decoder(out_shape=self.dataParams['features'])
|
||||
self.mu, self.logvar = Linear(10, self.latent_dim), Linear(10, self.latent_dim)
|
||||
|
||||
def _build_encoder(self):
|
||||
linear_stack = Sequential(
|
||||
Linear(6, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, 10, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
encoder = Sequential(
|
||||
TimeDistributed(linear_stack),
|
||||
GRU(10, 10, batch_first=True),
|
||||
RNNOutputFilter(only_last=True),
|
||||
)
|
||||
return encoder
|
||||
|
||||
def reparameterize(self, mu, logvar):
|
||||
# Lambda Layer, add gaussian noise
|
||||
std = torch.exp(0.5*logvar)
|
||||
eps = torch.randn_like(std)
|
||||
return mu + eps*std
|
||||
|
||||
def _build_decoder(self, out_shape):
|
||||
decoder = Sequential(
|
||||
Linear(10, 100, bias=True),
|
||||
ReLU(),
|
||||
Linear(100, out_shape, bias=True),
|
||||
ReLU()
|
||||
)
|
||||
|
||||
sequential_decoder = Sequential(
|
||||
GRU(self.latent_dim, 10, batch_first=True),
|
||||
RNNOutputFilter(),
|
||||
TimeDistributed(decoder)
|
||||
)
|
||||
return sequential_decoder
|
||||
|
||||
def forward(self, batch):
|
||||
encoding = self.encoder(batch)
|
||||
mu_logvar = self.mu(encoding), self.logvar(encoding)
|
||||
z = self.reparameterize(*mu_logvar)
|
||||
repeat = Repeater((batch.shape[0], self.dataParams['size'], -1))
|
||||
x_hat = self.decoder(repeat(z))
|
||||
return (x_hat, *mu_logvar)
|
||||
|
||||
|
||||
class VAELightningOverrides:
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
x_hat, logvar, mu = self.forward(x)
|
||||
BCE = mse_loss(x_hat, x, reduction='mean')
|
||||
|
||||
# see Appendix B from VAE paper:
|
||||
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
|
||||
# https://arxiv.org/abs/1312.6114
|
||||
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
|
||||
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
|
||||
return {'loss': BCE + KLD}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise PermissionError('Get out of here - never run this module')
|
@ -90,13 +90,15 @@ class Repeater(Module):
|
||||
|
||||
class RNNOutputFilter(Module):
|
||||
|
||||
def __init__(self, return_output=True):
|
||||
def __init__(self, return_output=True, only_last=False):
|
||||
super(RNNOutputFilter, self).__init__()
|
||||
self.only_last = only_last
|
||||
self.return_output = return_output
|
||||
|
||||
def forward(self, x: tuple):
|
||||
outputs, hidden = x
|
||||
return outputs if self.return_output else hidden
|
||||
out = outputs if self.return_output else hidden
|
||||
return out if not self.only_last else out[:, -1, :]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Reference in New Issue
Block a user