106 lines
2.6 KiB
Python

import torch
import pytorch_lightning as pl
from torch.nn import Module
from abc import ABC, abstractmethod
######################
# Abstract Network class following the Lightning Syntax
class LightningModule(pl.LightningModule, ABC):
def __init__(self):
super(LightningModule, self).__init__()
@abstractmethod
def forward(self, x):
raise NotImplementedError
@abstractmethod
def training_step(self, batch, batch_nb):
# REQUIRED
raise NotImplementedError
def validation_step(self, batch, batch_nb):
# OPTIONAL
pass
def validation_end(self, outputs):
# OPTIONAL
pass
@abstractmethod
def configure_optimizers(self):
# REQUIRED
raise NotImplementedError
@pl.data_loader
def tng_dataloader(self):
# REQUIRED
raise NotImplementedError
# return DataLoader(MNIST(os.getcwd(), train=True, download=True,
# transform=transforms.ToTensor()), batch_size=32)
@pl.data_loader
def val_dataloader(self):
# OPTIONAL
pass
@pl.data_loader
def test_dataloader(self):
# OPTIONAL
pass
#######################
# Utility Modules
class TimeDistributed(Module):
def __init__(self, module, batch_first=True):
super(TimeDistributed, self).__init__()
self.module = module
self.batch_first = batch_first
def forward(self, x):
if len(x.size()) <= 2:
return self.module(x)
# Squash samples and timesteps into a single axis
x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size)
y = self.module(x_reshape)
# We have to reshape Y
if self.batch_first:
y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size)
else:
y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size)
return y
class Repeater(Module):
def __init__(self, shape):
super(Repeater, self).__init__()
self.shape = shape
def forward(self, x: torch.Tensor):
x.unsqueeze_(-2)
return x.expand(self.shape)
class RNNOutputFilter(Module):
def __init__(self, return_output=True, only_last=False):
super(RNNOutputFilter, self).__init__()
self.only_last = only_last
self.return_output = return_output
def forward(self, x: tuple):
outputs, hidden = x
out = outputs if self.return_output else hidden
return out if not self.only_last else out[:, -1, :]
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')