2019-03-05 20:41:02 +01:00

198 lines
6.7 KiB
Python

import os
from argparse import ArgumentParser
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import colorlover as cl
import dill
from sklearn.manifold.t_sne import TSNE
def build_args():
arg_parser = ArgumentParser()
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
return arg_parser.parse_args()
def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'):
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(np.asarray(data_dict[trajectory_id]))
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
line_trace = go.Scatter(
x=transformed[:, 0],
y=transformed[:, 1],
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
marker=dict(
color='rgb(255, 0, 0)',
size=4
),
showlegend=False
)
line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
marker=dict(
color='rgb(0, 0, 0)',
size=4
),
showlegend=False
)
data.extend([line_trace, line_start, line_end])
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
# import plotly.io as pio
# pio.write_image(fig, filename)
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_latent_trajectories_3D(data_dict, filename='plot'):
def norm(val, a=0, b=0.25):
return (val - a) / (b - a)
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
max_len = max([len(trajectory) for trajectory in data_dict.values()])
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(data_dict[trajectory_id])
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
trace = go.Scatter3d(
x=transformed[:, 0],
y=transformed[:, 1],
z=np.arange(transformed.shape[0]),
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
data.append(trace)
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
xaxis=dict(tickwidth=1, title='Transformed X'),
yaxis=dict(tickwidth=1, title='transformed Y'),
zaxis=dict(tickwidth=1, title='Epoch')),
title='{} - Latent Trajectory Movement'.format('Penis'),
width=800, height=800,
margin=dict(l=0, r=0, b=0, t=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_histogram(bars_dict_list, filename='histogram_plot'):
# catagorical
ryb = cl.scales['10']['div']['RdYlBu']
data = []
for bar_id, bars_dict in bars_dict_list:
hist = go.Histogram(
histfunc="count",
y=bars_dict.get('value', 14),
x=bars_dict.get('name', 'gimme a name'),
showlegend=False,
marker=dict(
color=ryb[bar_id]
),
)
data.append(hist)
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def line_plot(line_dict_list, filename='lineplot'):
# lines with standard deviation
# Transform data accordingly and plot it
data = []
rdylgn = cl.scales['10']['div']['RdYlGn']
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
for line_id, line_dict in enumerate(line_dict_list):
name = line_dict.get('name', 'gimme a name')
upper_bound = go.Scatter(
name='Upper Bound',
x=line_dict['x'],
y=line_dict['upper_y'],
mode='lines',
marker=dict(color="#444"),
line=dict(width=0),
fillcolor=rdylgn_background[line_id],
)
trace = go.Scatter(
x=line_dict['x'],
y=line_dict['main_y'],
mode='lines',
name=name,
line=dict(color=line_id),
fillcolor=rdylgn_background[line_id],
fill='tonexty')
lower_bound = go.Scatter(
name='Lower Bound',
x=line_dict['x'],
y=line_dict['lower_y'],
marker=dict(color="#444"),
line=dict(width=0),
mode='lines')
data.extend([upper_bound, trace, lower_bound])
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
if __name__ == '__main__':
args = build_args()
in_file = args.in_file[0]
out_file = args.out_file
with open(in_file, 'rb') as in_f:
experiment = dill.load(in_f)
plot_latent_trajectories_3D(experiment.data_storage)
print('aha')