model getter fixed

This commit is contained in:
Si11ium 2019-03-05 20:41:02 +01:00
parent de6aa68f23
commit 20e9545b02
11 changed files with 1961 additions and 1961 deletions

1146
.gitignore vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,2 +1,2 @@
# bannana-networks
# bannana-networks

View File

@ -1,113 +1,113 @@
import os
import time
import dill
from tqdm import tqdm
from collections import defaultdict
class Experiment:
@staticmethod
def from_dill(path):
with open(path, "rb") as dill_file:
return dill.load(dill_file)
def __init__(self, name=None, ident=None):
self.experiment_id = ident or time.time()
self.experiment_name = name or 'unnamed_experiment'
self.base_dir = self.experiment_name
self.next_iteration = 0
self.log_messages = []
self.data_storage = defaultdict(list)
def __enter__(self):
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
name=self.experiment_name, id=self.experiment_id, it=self.next_iteration)
)
os.makedirs(self.dir)
print("** created {dir} **".format(dir=self.dir))
return self
def __exit__(self, exc_type, exc_value, traceback):
self.save(experiment=self)
self.save_log()
self.next_iteration += 1
def log(self, message, **kwargs):
self.log_messages.append(message)
print(message, **kwargs)
def save_log(self, log_name="log"):
with open(os.path.join(self.dir, "{name}.txt".format(name=log_name)), "w") as log_file:
for log_message in self.log_messages:
print(str(log_message), file=log_file)
def save(self, **kwargs):
for name, value in kwargs.items():
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
dill.dump(value, dill_file)
def add_trajectory_segment(self, run_id, trajectory):
self.data_storage[run_id].append(trajectory)
return
class FixpointExperiment(Experiment):
def __init__(self):
super().__init__(name=self.__class__.__name__)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_net(self, net, step_limit=100, run_id=0):
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
i += 1
if run_id:
weights = net.get_weights_flat()
self.add_trajectory_segment(run_id, weights)
self.count(net)
def count(self, net):
if net.is_diverged():
self.counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
self.counters['fix_zero'] += 1
else:
self.counters['fix_other'] += 1
self.interesting_fixpoints.append(net.get_weights())
elif net.is_fixpoint(2):
self.counters['fix_sec'] += 1
else:
self.counters['other'] += 1
class MixedFixpointExperiment(FixpointExperiment):
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
# TODO Where to place the trajectory storage ?
# weights = net.get_weights()
# self.add_trajectory_segment(run_id, weights)
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
for _ in range(trains_per_application):
loss = net.compiled().train()
bar.postfix[1]["value"] = loss
bar.update()
i += 1
self.count(net)
class SoupExperiment(Experiment):
pass
class IdentLearningExperiment(Experiment):
pass
import os
import time
import dill
from tqdm import tqdm
from collections import defaultdict
class Experiment:
@staticmethod
def from_dill(path):
with open(path, "rb") as dill_file:
return dill.load(dill_file)
def __init__(self, name=None, ident=None):
self.experiment_id = ident or time.time()
self.experiment_name = name or 'unnamed_experiment'
self.base_dir = self.experiment_name
self.next_iteration = 0
self.log_messages = []
self.data_storage = defaultdict(list)
def __enter__(self):
self.dir = os.path.join(self.base_dir, 'experiments', 'exp-{name}-{id}-{it}'.format(
name=self.experiment_name, id=self.experiment_id, it=self.next_iteration)
)
os.makedirs(self.dir)
print("** created {dir} **".format(dir=self.dir))
return self
def __exit__(self, exc_type, exc_value, traceback):
self.save(experiment=self)
self.save_log()
self.next_iteration += 1
def log(self, message, **kwargs):
self.log_messages.append(message)
print(message, **kwargs)
def save_log(self, log_name="log"):
with open(os.path.join(self.dir, "{name}.txt".format(name=log_name)), "w") as log_file:
for log_message in self.log_messages:
print(str(log_message), file=log_file)
def save(self, **kwargs):
for name, value in kwargs.items():
with open(os.path.join(self.dir, "{name}.dill".format(name=name)), "wb") as dill_file:
dill.dump(value, dill_file)
def add_trajectory_segment(self, run_id, trajectory):
self.data_storage[run_id].append(trajectory)
return
class FixpointExperiment(Experiment):
def __init__(self):
super().__init__(name=self.__class__.__name__)
self.counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
self.interesting_fixpoints = []
def run_net(self, net, step_limit=100, run_id=0):
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
i += 1
if run_id:
weights = net.get_weights_flat()
self.add_trajectory_segment(run_id, weights)
self.count(net)
def count(self, net):
if net.is_diverged():
self.counters['divergent'] += 1
elif net.is_fixpoint():
if net.is_zero():
self.counters['fix_zero'] += 1
else:
self.counters['fix_other'] += 1
self.interesting_fixpoints.append(net.get_weights())
elif net.is_fixpoint(2):
self.counters['fix_sec'] += 1
else:
self.counters['other'] += 1
class MixedFixpointExperiment(FixpointExperiment):
def run_net(self, net, trains_per_application=100, step_limit=100, run_id=0):
# TODO Where to place the trajectory storage ?
# weights = net.get_weights()
# self.add_trajectory_segment(run_id, weights)
i = 0
while i < step_limit and not net.is_diverged() and not net.is_fixpoint():
net.self_attack()
with tqdm(postfix=["Loss", dict(value=0)]) as bar:
for _ in range(trains_per_application):
loss = net.compiled().train()
bar.postfix[1]["value"] = loss
bar.update()
i += 1
self.count(net)
class SoupExperiment(Experiment):
pass
class IdentLearningExperiment(Experiment):
pass

File diff suppressed because one or more lines are too long

View File

@ -1,191 +1,191 @@
import tensorflow as tf
from keras.models import Sequential, Model
from keras.layers import SimpleRNN, Dense
from keras.layers import Input, TimeDistributed
from tqdm import tqdm
import time
import os
import dill
from experiment import Experiment
import itertools
from typing import Union
import numpy as np
class Network(object):
def __init__(self, features, cells, layers, bias=False, recurrent=False):
self.features = features
self.cells = cells
self.num_layer = layers
bias_params = cells if bias else 0
# Recurrent network
if recurrent:
# First RNN
p_layer_1 = (self.features * self.cells + self.cells ** 2 + bias_params)
# All other RNN Layers
p_layer_n = (self.cells * self.cells + self.cells ** 2 + bias_params) * (self.num_layer - 1)
else:
# First Dense
p_layer_1 = (self.features * self.cells + bias_params)
# All other Dense Layers
p_layer_n = (self.cells * self.cells + bias_params) * (self.num_layer - 1)
# Final Dense
p_layer_out = self.features * self.cells + bias_params
self.parameters = np.sum([p_layer_1, p_layer_n, p_layer_out])
# Build network
cell = SimpleRNN if recurrent else Dense
self.inputs, x = Input(shape=(self.parameters // self.features,
self.features) if recurrent else (self.features,)), None
for layer in range(self.num_layer):
if recurrent:
x = SimpleRNN(self.cells, activation=None, use_bias=False,
return_sequences=True)(self.inputs if layer == 0 else x)
else:
x = Dense(self.cells, activation=None, use_bias=False,
)(self.inputs if layer == 0 else x)
self.outputs = Dense(self.features if recurrent else 1, activation=None, use_bias=False)(x)
print('Network initialized, i haz {p} params @:{e}Features: {f}{e}Cells: {c}{e}Layers: {l}'.format(
p=self.parameters, l=self.num_layer, c=self.cells, f=self.features, e='\n{}'.format(' ' * 5))
)
pass
def get_inputs(self):
return self.inputs
def get_outputs(self):
return self.outputs
class _BaseNetwork(Model):
def __init__(self, **kwargs):
super(_BaseNetwork, self).__init__(**kwargs)
# This is dirty
self.features = None
def get_weights_flat(self):
weights = super().get_weights()
flat = np.asarray(np.concatenate([x.flatten() for x in weights]))
return flat
def step(self, x):
pass
def step_other(self, other: Union[Sequential, Model]) -> bool:
pass
def get_parameter_count(self):
return np.sum([np.prod(x.shape) for x in self.get_weights()])
def train_on_batch(self, *args, **kwargs):
raise NotImplementedError
def compile(self, *args, **kwargs):
raise NotImplementedError
@staticmethod
def mean_abs_error(labels, predictions):
return np.mean(np.abs(predictions - labels), axis=-1)
@staticmethod
def mean_sqrd_error(labels, predictions):
return np.mean(np.square(predictions - labels), axis=-1)
class RecurrentNetwork(_BaseNetwork):
def __init__(self, network: Network, *args, **kwargs):
super().__init__(inputs=network.inputs, outputs=network.outputs)
self.features = network.features
self.parameters = network.parameters
assert self.parameters == self.get_parameter_count()
def step(self, x):
shaped = np.reshape(x, (1, -1, self.features))
return self.predict(shaped).flatten()
def fit(self, epochs=500, **kwargs):
losses = []
with tqdm(total=epochs, ascii=True,
desc='Type: {t}'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
x = self.get_weights_flat()
y = self.step(x)
weights = self.get_weights()
global_idx = 0
for idx, weight_matrix in enumerate(weights):
flattened = weight_matrix.flatten()
new_weights = y[global_idx:global_idx + flattened.shape[0]]
weights[idx] = np.reshape(new_weights, weight_matrix.shape)
global_idx += flattened.shape[0]
losses.append(self.mean_sqrd_error(y.flatten(), self.get_weights_flat()))
self.set_weights(weights)
bar.postfix[1]["value"] = losses[-1]
bar.update()
return losses
class FeedForwardNetwork(_BaseNetwork):
def __init__(self, network:Network, **kwargs):
super().__init__(inputs=network.inputs, outputs=network.outputs, **kwargs)
self.features = network.features
self.parameters = network.parameters
self.num_layer = network.num_layer
self.num_cells = network.cells
# assert self.parameters == self.get_parameter_count()
def step(self, x):
return self.predict(x)
def step_other(self, x):
return self.predict(x)
def fit(self, epochs=500, **kwargs):
losses = []
with tqdm(total=epochs, ascii=True,
desc='Type: {t} @ Epoch:'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
all_weights = self.get_weights_flat()
cell_idx = np.apply_along_axis(lambda x: x/self.num_cells, 0, np.arange(int(self.get_parameter_count())))
xc = np.concatenate((all_weights[..., None], cell_idx[..., None]), axis=1)
y = self.step(xc)
weights = self.get_weights()
global_idx = 0
for idx, weight_matrix in enumerate(weights):
# UPDATE THE WEIGHTS
flattened = weight_matrix.flatten()
new_weights = y[global_idx:global_idx + flattened.shape[0], 0]
weights[idx] = np.reshape(new_weights, weight_matrix.shape)
global_idx += flattened.shape[0]
losses.append(self.mean_sqrd_error(y[:, 0].flatten(), self.get_weights_flat()))
self.set_weights(weights)
bar.postfix[1]["value"] = losses[-1]
bar.update()
return losses
if __name__ == '__main__':
with Experiment() as exp:
features, cells, layers = 2, 2, 2
use_recurrent = False
if use_recurrent:
network = Network(features, cells, layers, recurrent=use_recurrent)
r = RecurrentNetwork(network)
loss = r.fit(epochs=10)
exp.save(rnet=r)
else:
network = Network(features, cells, layers, recurrent=use_recurrent)
ff = FeedForwardNetwork(network)
loss = ff.fit(epochs=10)
exp.save(ffnet=ff)
print(loss)
import tensorflow as tf
from keras.models import Sequential, Model
from keras.layers import SimpleRNN, Dense
from keras.layers import Input, TimeDistributed
from tqdm import tqdm
import time
import os
import dill
from experiment import Experiment
import itertools
from typing import Union
import numpy as np
class Network(object):
def __init__(self, features, cells, layers, bias=False, recurrent=False):
self.features = features
self.cells = cells
self.num_layer = layers
bias_params = cells if bias else 0
# Recurrent network
if recurrent:
# First RNN
p_layer_1 = (self.features * self.cells + self.cells ** 2 + bias_params)
# All other RNN Layers
p_layer_n = (self.cells * self.cells + self.cells ** 2 + bias_params) * (self.num_layer - 1)
else:
# First Dense
p_layer_1 = (self.features * self.cells + bias_params)
# All other Dense Layers
p_layer_n = (self.cells * self.cells + bias_params) * (self.num_layer - 1)
# Final Dense
p_layer_out = self.features * self.cells + bias_params
self.parameters = np.sum([p_layer_1, p_layer_n, p_layer_out])
# Build network
cell = SimpleRNN if recurrent else Dense
self.inputs, x = Input(shape=(self.parameters // self.features,
self.features) if recurrent else (self.features,)), None
for layer in range(self.num_layer):
if recurrent:
x = SimpleRNN(self.cells, activation=None, use_bias=False,
return_sequences=True)(self.inputs if layer == 0 else x)
else:
x = Dense(self.cells, activation=None, use_bias=False,
)(self.inputs if layer == 0 else x)
self.outputs = Dense(self.features if recurrent else 1, activation=None, use_bias=False)(x)
print('Network initialized, i haz {p} params @:{e}Features: {f}{e}Cells: {c}{e}Layers: {l}'.format(
p=self.parameters, l=self.num_layer, c=self.cells, f=self.features, e='\n{}'.format(' ' * 5))
)
pass
def get_inputs(self):
return self.inputs
def get_outputs(self):
return self.outputs
class _BaseNetwork(Model):
def __init__(self, **kwargs):
super(_BaseNetwork, self).__init__(**kwargs)
# This is dirty
self.features = None
def get_weights_flat(self):
weights = super().get_weights()
flat = np.asarray(np.concatenate([x.flatten() for x in weights]))
return flat
def step(self, x):
pass
def step_other(self, other: Union[Sequential, Model]) -> bool:
pass
def get_parameter_count(self):
return np.sum([np.prod(x.shape) for x in self.get_weights()])
def train_on_batch(self, *args, **kwargs):
raise NotImplementedError
def compile(self, *args, **kwargs):
raise NotImplementedError
@staticmethod
def mean_abs_error(labels, predictions):
return np.mean(np.abs(predictions - labels), axis=-1)
@staticmethod
def mean_sqrd_error(labels, predictions):
return np.mean(np.square(predictions - labels), axis=-1)
class RecurrentNetwork(_BaseNetwork):
def __init__(self, network: Network, *args, **kwargs):
super().__init__(inputs=network.inputs, outputs=network.outputs)
self.features = network.features
self.parameters = network.parameters
assert self.parameters == self.get_parameter_count()
def step(self, x):
shaped = np.reshape(x, (1, -1, self.features))
return self.predict(shaped).flatten()
def fit(self, epochs=500, **kwargs):
losses = []
with tqdm(total=epochs, ascii=True,
desc='Type: {t}'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
x = self.get_weights_flat()
y = self.step(x)
weights = self.get_weights()
global_idx = 0
for idx, weight_matrix in enumerate(weights):
flattened = weight_matrix.flatten()
new_weights = y[global_idx:global_idx + flattened.shape[0]]
weights[idx] = np.reshape(new_weights, weight_matrix.shape)
global_idx += flattened.shape[0]
losses.append(self.mean_sqrd_error(y.flatten(), self.get_weights_flat()))
self.set_weights(weights)
bar.postfix[1]["value"] = losses[-1]
bar.update()
return losses
class FeedForwardNetwork(_BaseNetwork):
def __init__(self, network:Network, **kwargs):
super().__init__(inputs=network.inputs, outputs=network.outputs, **kwargs)
self.features = network.features
self.parameters = network.parameters
self.num_layer = network.num_layer
self.num_cells = network.cells
# assert self.parameters == self.get_parameter_count()
def step(self, x):
return self.predict(x)
def step_other(self, x):
return self.predict(x)
def fit(self, epochs=500, **kwargs):
losses = []
with tqdm(total=epochs, ascii=True,
desc='Type: {t} @ Epoch:'. format(t=self.__class__.__name__),
postfix=["Loss", dict(value=0)]) as bar:
for _ in range(epochs):
all_weights = self.get_weights_flat()
cell_idx = np.apply_along_axis(lambda x: x/self.num_cells, 0, np.arange(int(self.get_parameter_count())))
xc = np.concatenate((all_weights[..., None], cell_idx[..., None]), axis=1)
y = self.step(xc)
weights = self.get_weights()
global_idx = 0
for idx, weight_matrix in enumerate(weights):
# UPDATE THE WEIGHTS
flattened = weight_matrix.flatten()
new_weights = y[global_idx:global_idx + flattened.shape[0], 0]
weights[idx] = np.reshape(new_weights, weight_matrix.shape)
global_idx += flattened.shape[0]
losses.append(self.mean_sqrd_error(y[:, 0].flatten(), self.get_weights_flat()))
self.set_weights(weights)
bar.postfix[1]["value"] = losses[-1]
bar.update()
return losses
if __name__ == '__main__':
with Experiment() as exp:
features, cells, layers = 2, 2, 2
use_recurrent = False
if use_recurrent:
network = Network(features, cells, layers, recurrent=use_recurrent)
r = RecurrentNetwork(network)
loss = r.fit(epochs=10)
exp.save(rnet=r)
else:
network = Network(features, cells, layers, recurrent=use_recurrent)
ff = FeedForwardNetwork(network)
loss = ff.fit(epochs=10)
exp.save(ffnet=ff)
print(loss)

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@ -1,104 +1,104 @@
import random
import copy
from tqdm import tqdm
from experiment import *
from network import *
def prng():
return random.random()
class Soup:
def __init__(self, size, generator, **kwargs):
self.size = size
self.generator = generator
self.particles = []
self.params = dict(meeting_rate=0.1, train_other_rate=0.1, train=0)
self.params.update(kwargs)
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def seed(self):
self.particles = []
for _ in range(self.size):
self.particles += [self.generator()]
return self
def evolve(self, iterations=1):
for _ in range(iterations):
for particle_id, particle in enumerate(self.particles):
if prng() < self.params.get('meeting_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.attack(other_particle)
if prng() < self.params.get('train_other_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.train_other(other_particle)
try:
for _ in range(self.params.get('train', 0)):
particle.compiled().train()
except AttributeError:
pass
if self.params.get('remove_divergent') and particle.is_diverged():
self.particles[particle_id] = self.generator()
if self.params.get('remove_zero') and particle.is_zero():
self.particles[particle_id] = self.generator()
def count(self):
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
for particle in self.particles:
if particle.is_diverged():
counters['divergent'] += 1
elif particle.is_fixpoint():
if particle.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
elif particle.is_fixpoint(2):
counters['fix_sec'] += 1
else:
counters['other'] += 1
return counters
class LearningSoup(Soup):
def __init__(self, *args, **kwargs):
super(LearningSoup, self).__init__(**kwargs)
if __name__ == '__main__':
if False:
with SoupExperiment() as exp:
for run_id in range(1):
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
soup.seed()
for _ in tqdm(range(100)):
soup.evolve()
exp.log(soup.count())
if True:
with SoupExperiment() as exp:
for run_id in range(1):
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)).with_keras_params(
activation='linear')
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup = Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True).with_params(train=500)
soup.seed()
for _ in tqdm(range(10)):
soup.evolve()
exp.log(soup.count())
import random
import copy
from tqdm import tqdm
from experiment import *
from network import *
def prng():
return random.random()
class Soup:
def __init__(self, size, generator, **kwargs):
self.size = size
self.generator = generator
self.particles = []
self.params = dict(meeting_rate=0.1, train_other_rate=0.1, train=0)
self.params.update(kwargs)
def with_params(self, **kwargs):
self.params.update(kwargs)
return self
def seed(self):
self.particles = []
for _ in range(self.size):
self.particles += [self.generator()]
return self
def evolve(self, iterations=1):
for _ in range(iterations):
for particle_id, particle in enumerate(self.particles):
if prng() < self.params.get('meeting_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.attack(other_particle)
if prng() < self.params.get('train_other_rate'):
other_particle_id = int(prng() * len(self.particles))
other_particle = self.particles[other_particle_id]
particle.train_other(other_particle)
try:
for _ in range(self.params.get('train', 0)):
particle.compiled().train()
except AttributeError:
pass
if self.params.get('remove_divergent') and particle.is_diverged():
self.particles[particle_id] = self.generator()
if self.params.get('remove_zero') and particle.is_zero():
self.particles[particle_id] = self.generator()
def count(self):
counters = dict(divergent=0, fix_zero=0, fix_other=0, fix_sec=0, other=0)
for particle in self.particles:
if particle.is_diverged():
counters['divergent'] += 1
elif particle.is_fixpoint():
if particle.is_zero():
counters['fix_zero'] += 1
else:
counters['fix_other'] += 1
elif particle.is_fixpoint(2):
counters['fix_sec'] += 1
else:
counters['other'] += 1
return counters
class LearningSoup(Soup):
def __init__(self, *args, **kwargs):
super(LearningSoup, self).__init__(**kwargs)
if __name__ == '__main__':
if False:
with SoupExperiment() as exp:
for run_id in range(1):
net_generator = lambda: WeightwiseNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup = Soup(100, net_generator).with_params(remove_divergent=True, remove_zero=True)
soup.seed()
for _ in tqdm(range(100)):
soup.evolve()
exp.log(soup.count())
if True:
with SoupExperiment() as exp:
for run_id in range(1):
net_generator = lambda: TrainingNeuralNetworkDecorator(WeightwiseNeuralNetwork(2, 2)).with_keras_params(
activation='linear')
# net_generator = lambda: AggregatingNeuralNetwork(4, 2, 2).with_keras_params(activation='sigmoid')\
# .with_params(shuffler=AggregatingNeuralNetwork.shuffle_random)
# net_generator = lambda: RecurrentNeuralNetwork(2, 2).with_keras_params(activation='linear').with_params()
soup = Soup(10, net_generator).with_params(remove_divergent=True, remove_zero=True).with_params(train=500)
soup.seed()
for _ in tqdm(range(10)):
soup.evolve()
exp.log(soup.count())

View File

@ -1,33 +1,33 @@
from experiment import *
from network import *
from soup import *
import numpy as np
def vary(e=0.0, f=0.0):
return [
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),
np.array([[1.0+e], [0.0+f]], dtype=np.float32)
]
if __name__ == '__main__':
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
if False:
net.set_weights([
np.array([[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0], [0.0]], dtype=np.float32)
])
print(net.get_weights())
net.self_attack(100)
print(net.get_weights())
print(net.is_fixpoint())
if True:
net.set_weights(vary(0.01, 0.0))
print(net.get_weights())
for _ in range(5):
net.self_attack()
print(net.get_weights())
print(net.is_fixpoint())
from experiment import *
from network import *
from soup import *
import numpy as np
def vary(e=0.0, f=0.0):
return [
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),
np.array([[1.0+e, 0.0+f], [0.0+f, 0.0+f]], dtype=np.float32),
np.array([[1.0+e], [0.0+f]], dtype=np.float32)
]
if __name__ == '__main__':
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
if False:
net.set_weights([
np.array([[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0, 0.0], [0.0, 0.0]], dtype=np.float32),
np.array([[1.0], [0.0]], dtype=np.float32)
])
print(net.get_weights())
net.self_attack(100)
print(net.get_weights())
print(net.is_fixpoint())
if True:
net.set_weights(vary(0.01, 0.0))
print(net.get_weights())
for _ in range(5):
net.self_attack()
print(net.get_weights())
print(net.is_fixpoint())

View File

@ -1,39 +1,39 @@
class PrintingObject:
class SilenceSignal():
def __init__(self, obj, value):
self.obj = obj
self.new_silent = value
def __enter__(self):
self.old_silent = self.obj.get_silence()
self.obj.set_silence(self.new_silent)
def __exit__(self, exception_type, exception_value, traceback):
self.obj.set_silence(self.old_silent)
def __init__(self):
self.silent = True
def is_silent(self):
return self.silent
def get_silence(self):
return self.is_silent()
def set_silence(self, value=True):
self.silent = value
return self
def unset_silence(self):
self.silent = False
return self
def with_silence(self, value=True):
self.set_silence(value)
return self
def silence(self, value=True):
return self.__class__.SilenceSignal(self, value)
def _print(self, *args, **kwargs):
if not self.silent:
class PrintingObject:
class SilenceSignal():
def __init__(self, obj, value):
self.obj = obj
self.new_silent = value
def __enter__(self):
self.old_silent = self.obj.get_silence()
self.obj.set_silence(self.new_silent)
def __exit__(self, exception_type, exception_value, traceback):
self.obj.set_silence(self.old_silent)
def __init__(self):
self.silent = True
def is_silent(self):
return self.silent
def get_silence(self):
return self.is_silent()
def set_silence(self, value=True):
self.silent = value
return self
def unset_silence(self):
self.silent = False
return self
def with_silence(self, value=True):
self.set_silence(value)
return self
def silence(self, value=True):
return self.__class__.SilenceSignal(self, value)
def _print(self, *args, **kwargs):
if not self.silent:
print(*args, **kwargs)

View File

@ -1,197 +1,197 @@
import os
from argparse import ArgumentParser
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import colorlover as cl
import dill
from sklearn.manifold.t_sne import TSNE
def build_args():
arg_parser = ArgumentParser()
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
return arg_parser.parse_args()
def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'):
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(np.asarray(data_dict[trajectory_id]))
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
line_trace = go.Scatter(
x=transformed[:, 0],
y=transformed[:, 1],
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
marker=dict(
color='rgb(255, 0, 0)',
size=4
),
showlegend=False
)
line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
marker=dict(
color='rgb(0, 0, 0)',
size=4
),
showlegend=False
)
data.extend([line_trace, line_start, line_end])
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
# import plotly.io as pio
# pio.write_image(fig, filename)
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_latent_trajectories_3D(data_dict, filename='plot'):
def norm(val, a=0, b=0.25):
return (val - a) / (b - a)
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
max_len = max([len(trajectory) for trajectory in data_dict.values()])
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(data_dict[trajectory_id])
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
trace = go.Scatter3d(
x=transformed[:, 0],
y=transformed[:, 1],
z=np.arange(transformed.shape[0]),
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
data.append(trace)
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
xaxis=dict(tickwidth=1, title='Transformed X'),
yaxis=dict(tickwidth=1, title='transformed Y'),
zaxis=dict(tickwidth=1, title='Epoch')),
title='{} - Latent Trajectory Movement'.format('Penis'),
width=800, height=800,
margin=dict(l=0, r=0, b=0, t=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_histogram(bars_dict_list, filename='histogram_plot'):
# catagorical
ryb = cl.scales['10']['div']['RdYlBu']
data = []
for bar_id, bars_dict in bars_dict_list:
hist = go.Histogram(
histfunc="count",
y=bars_dict.get('value', 14),
x=bars_dict.get('name', 'gimme a name'),
showlegend=False,
marker=dict(
color=ryb[bar_id]
),
)
data.append(hist)
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def line_plot(line_dict_list, filename='lineplot'):
# lines with standard deviation
# Transform data accordingly and plot it
data = []
rdylgn = cl.scales['10']['div']['RdYlGn']
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
for line_id, line_dict in enumerate(line_dict_list):
name = line_dict.get('name', 'gimme a name')
upper_bound = go.Scatter(
name='Upper Bound',
x=line_dict['x'],
y=line_dict['upper_y'],
mode='lines',
marker=dict(color="#444"),
line=dict(width=0),
fillcolor=rdylgn_background[line_id],
)
trace = go.Scatter(
x=line_dict['x'],
y=line_dict['main_y'],
mode='lines',
name=name,
line=dict(color=line_id),
fillcolor=rdylgn_background[line_id],
fill='tonexty')
lower_bound = go.Scatter(
name='Lower Bound',
x=line_dict['x'],
y=line_dict['lower_y'],
marker=dict(color="#444"),
line=dict(width=0),
mode='lines')
data.extend([upper_bound, trace, lower_bound])
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
if __name__ == '__main__':
args = build_args()
in_file = args.in_file[0]
out_file = args.out_file
with open(in_file, 'rb') as in_f:
experiment = dill.load(in_f)
plot_latent_trajectories_3D(experiment.data_storage)
print('aha')
import os
from argparse import ArgumentParser
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import colorlover as cl
import dill
from sklearn.manifold.t_sne import TSNE
def build_args():
arg_parser = ArgumentParser()
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
return arg_parser.parse_args()
def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'):
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(np.asarray(data_dict[trajectory_id]))
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
line_trace = go.Scatter(
x=transformed[:, 0],
y=transformed[:, 1],
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
marker=dict(
color='rgb(255, 0, 0)',
size=4
),
showlegend=False
)
line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
marker=dict(
color='rgb(0, 0, 0)',
size=4
),
showlegend=False
)
data.extend([line_trace, line_start, line_end])
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
# import plotly.io as pio
# pio.write_image(fig, filename)
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_latent_trajectories_3D(data_dict, filename='plot'):
def norm(val, a=0, b=0.25):
return (val - a) / (b - a)
bupu = cl.scales['9']['seq']['BuPu']
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
max_len = max([len(trajectory) for trajectory in data_dict.values()])
# Fit the mebedding space
transformer = TSNE()
for trajectory_id in data_dict:
transformer.fit(data_dict[trajectory_id])
# Transform data accordingly and plot it
data = []
for trajectory_id in data_dict:
transformed = transformer._fit(np.asarray(data_dict[trajectory_id]))
trace = go.Scatter3d(
x=transformed[:, 0],
y=transformed[:, 1],
z=np.arange(transformed.shape[0]),
text='Hovertext goes here'.format(),
line=dict(color=scale[trajectory_id]),
# legendgroup='Position -{}'.format(pos),
# name='Position -{}'.format(pos),
showlegend=False,
# hoverinfo='text',
mode='lines')
data.append(trace)
layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1),
xaxis=dict(tickwidth=1, title='Transformed X'),
yaxis=dict(tickwidth=1, title='transformed Y'),
zaxis=dict(tickwidth=1, title='Epoch')),
title='{} - Latent Trajectory Movement'.format('Penis'),
width=800, height=800,
margin=dict(l=0, r=0, b=0, t=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def plot_histogram(bars_dict_list, filename='histogram_plot'):
# catagorical
ryb = cl.scales['10']['div']['RdYlBu']
data = []
for bar_id, bars_dict in bars_dict_list:
hist = go.Histogram(
histfunc="count",
y=bars_dict.get('value', 14),
x=bars_dict.get('name', 'gimme a name'),
showlegend=False,
marker=dict(
color=ryb[bar_id]
),
)
data.append(hist)
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
def line_plot(line_dict_list, filename='lineplot'):
# lines with standard deviation
# Transform data accordingly and plot it
data = []
rdylgn = cl.scales['10']['div']['RdYlGn']
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
for line_id, line_dict in enumerate(line_dict_list):
name = line_dict.get('name', 'gimme a name')
upper_bound = go.Scatter(
name='Upper Bound',
x=line_dict['x'],
y=line_dict['upper_y'],
mode='lines',
marker=dict(color="#444"),
line=dict(width=0),
fillcolor=rdylgn_background[line_id],
)
trace = go.Scatter(
x=line_dict['x'],
y=line_dict['main_y'],
mode='lines',
name=name,
line=dict(color=line_id),
fillcolor=rdylgn_background[line_id],
fill='tonexty')
lower_bound = go.Scatter(
name='Lower Bound',
x=line_dict['x'],
y=line_dict['lower_y'],
marker=dict(color="#444"),
line=dict(width=0),
mode='lines')
data.extend([upper_bound, trace, lower_bound])
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
fig = go.Figure(data=data, layout=layout)
pl.offline.plot(fig, auto_open=True, filename=filename)
pass
if __name__ == '__main__':
args = build_args()
in_file = args.in_file[0]
out_file = args.out_file
with open(in_file, 'rb') as in_f:
experiment = dill.load(in_f)
plot_latent_trajectories_3D(experiment.data_storage)
print('aha')