import os from argparse import ArgumentParser import numpy as np import plotly as pl import plotly.graph_objs as go import colorlover as cl import dill from sklearn.manifold.t_sne import TSNE def build_args(): arg_parser = ArgumentParser() arg_parser.add_argument('-i', '--in_file', nargs=1, type=str) arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str) return arg_parser.parse_args() def plot_latent_trajectories(data_dict, filename='latent_trajectory_plot'): bupu = cl.scales['9']['seq']['BuPu'] scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins # Fit the mebedding space transformer = TSNE() for trajectory_id in data_dict: transformer.fit(np.asarray(data_dict[trajectory_id])) # Transform data accordingly and plot it data = [] for trajectory_id in data_dict: transformed = transformer._fit(np.asarray(data_dict[trajectory_id])) line_trace = go.Scatter( x=transformed[:, 0], y=transformed[:, 1], text='Hovertext goes here'.format(), line=dict(color=scale[trajectory_id]), # legendgroup='Position -{}'.format(pos), # name='Position -{}'.format(pos), showlegend=False, # hoverinfo='text', mode='lines') line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]], marker=dict( color='rgb(255, 0, 0)', size=4 ), showlegend=False ) line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]], marker=dict( color='rgb(0, 0, 0)', size=4 ), showlegend=False ) data.extend([line_trace, line_start, line_end]) layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'), height=800, width=800, margin=dict(l=0, r=0, t=0, b=0)) # import plotly.io as pio # pio.write_image(fig, filename) fig = go.Figure(data=data, layout=layout) pl.offline.plot(fig, auto_open=True, filename=filename) pass def plot_latent_trajectories_3D(data_dict, filename='plot'): def norm(val, a=0, b=0.25): return (val - a) / (b - a) bupu = cl.scales['9']['seq']['BuPu'] scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins max_len = max([len(trajectory) for trajectory in data_dict.values()]) # Fit the mebedding space transformer = TSNE() for trajectory_id in data_dict: transformer.fit(data_dict[trajectory_id]) # Transform data accordingly and plot it data = [] for trajectory_id in data_dict: transformed = transformer._fit(np.asarray(data_dict[trajectory_id])) trace = go.Scatter3d( x=transformed[:, 0], y=transformed[:, 1], z=np.arange(transformed.shape[0]), text='Hovertext goes here'.format(), line=dict(color=scale[trajectory_id]), # legendgroup='Position -{}'.format(pos), # name='Position -{}'.format(pos), showlegend=False, # hoverinfo='text', mode='lines') data.append(trace) layout = go.Layout(scene=dict(aspectratio=dict(x=2, y=2, z=1), xaxis=dict(tickwidth=1, title='Transformed X'), yaxis=dict(tickwidth=1, title='transformed Y'), zaxis=dict(tickwidth=1, title='Epoch')), title='{} - Latent Trajectory Movement'.format('Penis'), width=800, height=800, margin=dict(l=0, r=0, b=0, t=0)) fig = go.Figure(data=data, layout=layout) pl.offline.plot(fig, auto_open=True, filename=filename) pass def plot_histogram(bars_dict_list, filename='histogram_plot'): # catagorical ryb = cl.scales['10']['div']['RdYlBu'] data = [] for bar_id, bars_dict in bars_dict_list: hist = go.Histogram( histfunc="count", y=bars_dict.get('value', 14), x=bars_dict.get('name', 'gimme a name'), showlegend=False, marker=dict( color=ryb[bar_id] ), ) data.append(hist) layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'), height=400, width=400, margin=dict(l=0, r=0, t=0, b=0)) fig = go.Figure(data=data, layout=layout) pl.offline.plot(fig, auto_open=True, filename=filename) pass def line_plot(line_dict_list, filename='lineplot'): # lines with standard deviation # Transform data accordingly and plot it data = [] rdylgn = cl.scales['10']['div']['RdYlGn'] rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)] for line_id, line_dict in enumerate(line_dict_list): name = line_dict.get('name', 'gimme a name') upper_bound = go.Scatter( name='Upper Bound', x=line_dict['x'], y=line_dict['upper_y'], mode='lines', marker=dict(color="#444"), line=dict(width=0), fillcolor=rdylgn_background[line_id], ) trace = go.Scatter( x=line_dict['x'], y=line_dict['main_y'], mode='lines', name=name, line=dict(color=line_id), fillcolor=rdylgn_background[line_id], fill='tonexty') lower_bound = go.Scatter( name='Lower Bound', x=line_dict['x'], y=line_dict['lower_y'], marker=dict(color="#444"), line=dict(width=0), mode='lines') data.extend([upper_bound, trace, lower_bound]) layout=dict(title='{} Line Plot'.format('Experiment Name Penis'), height=800, width=800, margin=dict(l=0, r=0, t=0, b=0)) fig = go.Figure(data=data, layout=layout) pl.offline.plot(fig, auto_open=True, filename=filename) pass if __name__ == '__main__': args = build_args() in_file = args.in_file[0] out_file = args.out_file with open(in_file, 'rb') as in_f: experiment = dill.load(in_f) plot_latent_trajectories_3D(experiment.data_storage) print('aha')