Merge branch 'journal' of gitlab.lrz.de:mobile-ifi/bannana-networks into journal
This commit is contained in:
commit
7e231b5b50
12
README.md
12
README.md
@ -1,6 +1,11 @@
|
||||
# self-rep NN paper - ALIFE journal edition
|
||||
|
||||
- [x] Plateau / Pillar sizeWhat does happen to the fixpoints after noise introduction and retraining?Options beeing: Same Fixpoint, Similar Fixpoint (Basin), Different Fixpoint? Do they do the clustering thingy?
|
||||
- [x] Plateau / Pillar sizeWhat does happen to the fixpoints after noise introduction and retraining?Options beeing: Same Fixpoint, Similar Fixpoint (Basin),
|
||||
- Different Fixpoint?
|
||||
Yes, we did not found same (10-5)
|
||||
- Do they do the clustering thingy?
|
||||
Kind of: Small movement towards (MIM-Distance getting smaller) parent fixpoint.
|
||||
Small movement for everyone? -> Distribution
|
||||
|
||||
- see `journal_basins.py` for the "train -> spawn with noise -> train again and see where they end up" functionality. Apply noise follows the `vary` function that was used in the paper robustness test with `+- prng() * eps`. Change if desired.
|
||||
|
||||
@ -9,6 +14,9 @@
|
||||
|
||||
- [ ] Same Thing with Soup interactionWe would expect the same behaviour...Influence of interaction with near and far away particles.
|
||||
|
||||
- [ ] How are basins / "attractor areas" shaped?
|
||||
- Weired.... tbc...
|
||||
|
||||
- [x] Robustness test with a trained NetworkTraining for high quality fixpoints, compare with the "perfect" fixpoint. Average Loss per application step
|
||||
|
||||
- see `journal_robustness.py` for robustness test modeled after cristians robustness-exp (with the exeption that we put noise on the weights). Has `synthetic` bool to switch to hand-modeled perfect fixpoint instead of naturally trained ones.
|
||||
@ -19,7 +27,7 @@
|
||||
|
||||
- [ ] Adjust Self Training so that it favors second order fixpoints-> Second order test implementation (?)
|
||||
|
||||
- [ ] Barplot over clones -> how many become a fixpoint cs how many diverge per noise level
|
||||
- [x] Barplot over clones -> how many become a fixpoint cs how many diverge per noise level
|
||||
|
||||
- [ ] Box-Plot of Avg. Distance of clones from parent
|
||||
|
||||
|
@ -55,8 +55,6 @@ class SelfTrainExperiment:
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.epochs):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
@ -113,5 +111,6 @@ def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_si
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, summary_directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError('Test this here!!!')
|
||||
|
@ -4,7 +4,6 @@ import pandas as pd
|
||||
import torch
|
||||
import random
|
||||
import copy
|
||||
import numpy as np
|
||||
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
@ -21,6 +20,7 @@ from matplotlib import pyplot as plt
|
||||
def prng():
|
||||
return random.random()
|
||||
|
||||
|
||||
def generate_perfekt_synthetic_fixpoint_weights():
|
||||
return torch.tensor([[1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0],
|
||||
[1.0], [0.0], [0.0], [0.0],
|
||||
@ -28,15 +28,32 @@ def generate_perfekt_synthetic_fixpoint_weights():
|
||||
], dtype=torch.float32)
|
||||
|
||||
|
||||
PALETTE = 10 * (
|
||||
"#377eb8",
|
||||
"#4daf4a",
|
||||
"#984ea3",
|
||||
"#e41a1c",
|
||||
"#ff7f00",
|
||||
"#a65628",
|
||||
"#f781bf",
|
||||
"#888888",
|
||||
"#a6cee3",
|
||||
"#b2df8a",
|
||||
"#cab2d6",
|
||||
"#fb9a99",
|
||||
"#fdbf6f",
|
||||
)
|
||||
|
||||
|
||||
class RobustnessComparisonExperiment:
|
||||
|
||||
@staticmethod
|
||||
def apply_noise(network, noise: int):
|
||||
""" Changing the weights of a network to values + noise """
|
||||
# Changing the weights of a network to values + noise
|
||||
for layer_id, layer_name in enumerate(network.state_dict()):
|
||||
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
|
||||
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
|
||||
#network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
# network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
if prng() < 0.5:
|
||||
network.state_dict()[layer_name][line_id][weight_id] = weight_value + noise
|
||||
else:
|
||||
@ -55,7 +72,7 @@ class RobustnessComparisonExperiment:
|
||||
self.epochs = epochs
|
||||
self.ST_steps = st_steps
|
||||
self.loss_history = []
|
||||
self.synthetic = synthetic
|
||||
self.is_synthetic = synthetic
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
@ -71,14 +88,14 @@ class RobustnessComparisonExperiment:
|
||||
self.id_functions = []
|
||||
self.nets = self.populate_environment()
|
||||
self.count_fixpoints()
|
||||
self.time_to_vergence, self.time_as_fixpoint = self.test_robustness()
|
||||
self.time_to_vergence, self.time_as_fixpoint = self.test_robustness(
|
||||
seeds=population_size if self.is_synthetic else 1)
|
||||
|
||||
self.save()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
nets = []
|
||||
if self.synthetic:
|
||||
if self.is_synthetic:
|
||||
''' Either use perfect / hand-constructed fixpoint ... '''
|
||||
net_name = f"net_{str(0)}_synthetic"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
@ -86,6 +103,7 @@ class RobustnessComparisonExperiment:
|
||||
nets.append(net)
|
||||
|
||||
else:
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating experiment %s" % i)
|
||||
|
||||
@ -95,62 +113,75 @@ class RobustnessComparisonExperiment:
|
||||
for _ in range(self.epochs):
|
||||
net.self_train(self.ST_steps, self.log_step_size, self.net_learning_rate)
|
||||
nets.append(net)
|
||||
|
||||
return nets
|
||||
|
||||
def test_robustness(self, print_it=True, noise_levels=10, seeds=10):
|
||||
assert (len(self.id_functions) == 1 and seeds > 1) or (len(self.id_functions) > 1 and seeds == 1)
|
||||
is_synthetic = True if len(self.id_functions) > 1 and seeds == 1 else False
|
||||
avg_time_to_vergence = [[0 for _ in range(noise_levels)] for _ in
|
||||
range(seeds if is_synthetic else len(self.id_functions))]
|
||||
avg_time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in
|
||||
range(seeds if is_synthetic else len(self.id_functions))]
|
||||
time_to_vergence = [[0 for _ in range(noise_levels)] for _ in
|
||||
range(seeds if self.is_synthetic else len(self.id_functions))]
|
||||
time_as_fixpoint = [[0 for _ in range(noise_levels)] for _ in
|
||||
range(seeds if self.is_synthetic else len(self.id_functions))]
|
||||
row_headers = []
|
||||
data_pos = 0
|
||||
|
||||
# This checks wether to use synthetic setting with multiple seeds
|
||||
# or multi network settings with a singlee seed
|
||||
|
||||
df = pd.DataFrame(columns=['seed', 'noise_level', 'application_step', 'absolute_loss'])
|
||||
for i, fixpoint in enumerate(self.id_functions): #1 / n
|
||||
df = pd.DataFrame(columns=['setting', 'noise_level', 'steps', 'absolute_loss', 'time_to_vergence', 'time_as_fixpoint'])
|
||||
with tqdm(total=max(len(self.id_functions), seeds)) as pbar:
|
||||
for i, fixpoint in enumerate(self.id_functions): # 1 / n
|
||||
row_headers.append(fixpoint.name)
|
||||
for seed in range(seeds): #n / 1
|
||||
for seed in range(seeds): # n / 1
|
||||
setting = seed if self.is_synthetic else i
|
||||
|
||||
for noise_level in range(noise_levels):
|
||||
self_application_steps = 1
|
||||
steps = 0
|
||||
clone = Net(fixpoint.input_size, fixpoint.hidden_size, fixpoint.out_size,
|
||||
f"{fixpoint.name}_clone_noise10e-{noise_level}")
|
||||
clone.load_state_dict(copy.deepcopy(fixpoint.state_dict()))
|
||||
rand_noise = prng() * pow(10, -noise_level) #n / 1
|
||||
rand_noise = prng() * pow(10, -noise_level) # n / 1
|
||||
clone = self.apply_noise(clone, rand_noise)
|
||||
|
||||
while not is_zero_fixpoint(clone) and not is_divergent(clone):
|
||||
if is_identity_function(clone):
|
||||
avg_time_as_fixpoint[i][noise_level] += 1
|
||||
|
||||
# -> before
|
||||
clone_weight_pre_application = clone.input_weight_matrix()
|
||||
target_data_pre_application = clone.create_target_weights(clone_weight_pre_application)
|
||||
|
||||
clone.self_application(1, self.log_step_size)
|
||||
avg_time_to_vergence[i][noise_level] += 1
|
||||
time_to_vergence[setting][noise_level] += 1
|
||||
# -> after
|
||||
clone_weight_post_application = clone.input_weight_matrix()
|
||||
target_data_post_application = clone.create_target_weights(clone_weight_post_application)
|
||||
|
||||
absolute_loss = F.l1_loss(target_data_pre_application, target_data_post_application).item()
|
||||
|
||||
setting = i if is_synthetic else seed
|
||||
|
||||
df.loc[data_pos] = [setting, noise_level, self_application_steps, absolute_loss]
|
||||
data_pos += 1
|
||||
self_application_steps += 1
|
||||
if is_identity_function(clone):
|
||||
time_as_fixpoint[setting][noise_level] += 1
|
||||
# When this raises a Type Error, we found a second order fixpoint!
|
||||
steps += 1
|
||||
|
||||
df.loc[df.shape[0]] = [setting, noise_level, steps, absolute_loss,
|
||||
time_to_vergence[setting][noise_level],
|
||||
time_as_fixpoint[setting][noise_level]]
|
||||
pbar.update(1)
|
||||
|
||||
# Get the measuremts at the highest time_time_to_vergence
|
||||
df_sorted = df.sort_values('steps', ascending=False).drop_duplicates(['setting', 'noise_level'])
|
||||
df_melted = df_sorted.reset_index().melt(id_vars=['setting', 'noise_level', 'steps'],
|
||||
value_vars=['time_to_vergence', 'time_as_fixpoint'],
|
||||
var_name="Measurement",
|
||||
value_name="Steps")
|
||||
# Plotting
|
||||
sns.set(style='whitegrid')
|
||||
bf = sns.boxplot(data=df_melted, y='Steps', x='noise_level', hue='Measurement', palette=PALETTE)
|
||||
bf.set_title('Robustness as self application steps per noise level')
|
||||
plt.tight_layout()
|
||||
|
||||
# calculate the average:
|
||||
df = df.replace([np.inf, -np.inf], np.nan)
|
||||
df = df.dropna()
|
||||
# sns.set(rc={'figure.figsize': (10, 50)})
|
||||
bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box',
|
||||
col='noise_level', col_wrap=3, showfliers=False)
|
||||
# bx = sns.catplot(data=df[df['absolute_loss'] < 1], y='absolute_loss', x='application_step', kind='box',
|
||||
# col='noise_level', col_wrap=3, showfliers=False)
|
||||
directory = Path('output') / 'robustness'
|
||||
directory.mkdir(parents=True, exist_ok=True)
|
||||
filename = f"absolute_loss_perapplication_boxplot_grid.png"
|
||||
filepath = directory / filename
|
||||
|
||||
@ -160,13 +191,11 @@ class RobustnessComparisonExperiment:
|
||||
col_headers = [str(f"10e-{d}") for d in range(noise_levels)]
|
||||
|
||||
print(f"\nAppplications steps until divergence / zero: ")
|
||||
print(tabulate(avg_time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
# print(tabulate(time_to_vergence, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
|
||||
print(f"\nTime as fixpoint: ")
|
||||
print(tabulate(avg_time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
|
||||
return avg_time_as_fixpoint, avg_time_to_vergence
|
||||
|
||||
# print(tabulate(time_as_fixpoint, showindex=row_headers, headers=col_headers, tablefmt='orgtbl'))
|
||||
return time_as_fixpoint, time_to_vergence
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"ST steps: {self.ST_steps}"
|
||||
@ -174,14 +203,12 @@ class RobustnessComparisonExperiment:
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
plot_loss(self.loss_history, self.directory)
|
||||
|
||||
|
||||
def save(self):
|
||||
pickle.dump(self, open(f"{self.directory}/experiment_pickle.p", "wb"))
|
||||
print(f"\nSaved experiment to {self.directory}.")
|
||||
@ -194,7 +221,7 @@ if __name__ == "__main__":
|
||||
ST_steps = 1000
|
||||
ST_epochs = 5
|
||||
ST_log_step_size = 10
|
||||
ST_population_size = 5
|
||||
ST_population_size = 100
|
||||
ST_net_hidden_size = 2
|
||||
ST_net_learning_rate = 0.04
|
||||
ST_name_hash = random.getrandbits(32)
|
||||
@ -211,5 +238,5 @@ if __name__ == "__main__":
|
||||
epochs=ST_epochs,
|
||||
st_steps=ST_steps,
|
||||
synthetic=ST_synthetic,
|
||||
directory=Path('output') / 'robustness' / f'{ST_name_hash}'
|
||||
directory=Path('output') / 'journal_robustness' / f'{ST_name_hash}'
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user