Refactor:

Step 1 - Introduction of Weight object for global weight operations
Step2 - Cleanup
Step 3 - Redone WEightwise network updates in clean numpy code
This commit is contained in:
Si11ium
2019-06-06 21:57:22 +02:00
parent f3987cdbb5
commit 50f7f84084
14 changed files with 193 additions and 865 deletions

View File

@@ -6,11 +6,10 @@ from typing import Tuple
# Concat top Level dir to system environmental variables
sys.path += os.path.join('..', '.')
from util import *
from experiment import *
from network import *
import keras.backend
import tensorflow.python.keras.backend as K
def generate_counters():
@@ -23,7 +22,7 @@ def generate_counters():
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
def count(counters, net, notable_nets=[]):
def count(counters, net, notable_nets=None):
"""
Count the occurences ot the types of weight trajectories.
@@ -34,7 +33,7 @@ def count(counters, net, notable_nets=[]):
:rtype Tuple[dict, list]
:return: Both the counter dictionary and the list of interessting nets.
"""
notable_nets = notable_nets or list()
if net.is_diverged():
counters['divergent'] += 1
elif net.is_fixpoint():