Refactor:
Step 1 - Introduction of Weight object for global weight operations Step2 - Cleanup Step 3 - Redone WEightwise network updates in clean numpy code
This commit is contained in:
parent
f3987cdbb5
commit
50f7f84084
@ -1,96 +0,0 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
from typing import List
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def plot_bars(names_bars_tuple, filename='histogram_plot'):
|
||||
# catagorical
|
||||
ryb = cl.scales['10']['div']['RdYlBu']
|
||||
names, bars = names_bars_tuple
|
||||
situations = list(bars[0].keys())
|
||||
names = ['Weightwise', 'Aggregating', 'Recurrent'] # [name.split(' ')[0] for name in names]
|
||||
data_dict = {}
|
||||
for idx, name in enumerate(names):
|
||||
data_dict[name] = bars[idx]
|
||||
|
||||
data = []
|
||||
|
||||
for idx, situation in enumerate(situations):
|
||||
bar = go.Bar(
|
||||
y=[data_dict[name][situation] for name in names],
|
||||
# x=[key for key in data_dict[name].keys()],
|
||||
x=names,
|
||||
name=situation,
|
||||
showlegend=True,
|
||||
)
|
||||
data.append(bar)
|
||||
|
||||
layout = dict(xaxis=dict(title="Networks", titlefont=dict(size=20)),
|
||||
barmode='stack',
|
||||
# height=400, width=400,
|
||||
# margin=dict(l=20, r=20, t=20, b=20)
|
||||
legend=dict(orientation="h", x=0.05)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
bars = dill.load(in_f)
|
||||
|
||||
names_dill_location = os.path.join(*os.path.split(absolut_file_or_folder)[:-1], 'all_names.dill')
|
||||
with open(names_dill_location, 'rb') as in_f:
|
||||
names = dill.load(in_f)
|
||||
|
||||
plotting_function((names, bars), filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
|
||||
else:
|
||||
pass
|
||||
# This was not a file i should look for.
|
||||
else:
|
||||
# This was either another FilyType or Plot.html alerady exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, plot_bars, files_to_look_for=['all_counters.dill'])
|
||||
# , 'all_names.dill', 'all_notable_nets.dill'])
|
@ -1,129 +0,0 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
from typing import List
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def plot_box(exp: Experiment, filename='histogram_plot'):
|
||||
# catagorical
|
||||
ryb = cl.scales['10']['div']['RdYlBu']
|
||||
|
||||
data = []
|
||||
|
||||
for d in range(exp.depth):
|
||||
names = ['D 10e-{}'.format(d)] * exp.trials
|
||||
data.extend(names)
|
||||
|
||||
trace_list = []
|
||||
|
||||
vergence_box = go.Box(
|
||||
y=exp.ys,
|
||||
x=data,
|
||||
name='Time to Vergence',
|
||||
boxpoints=False,
|
||||
showlegend=True,
|
||||
marker=dict(
|
||||
color=ryb[3]
|
||||
),
|
||||
)
|
||||
fixpoint_box = go.Box(
|
||||
y=exp.zs,
|
||||
x=data,
|
||||
name='Time as Fixpoint',
|
||||
boxpoints=False,
|
||||
showlegend=True,
|
||||
marker=dict(
|
||||
color=ryb[-1]
|
||||
),
|
||||
)
|
||||
|
||||
trace_list.extend([vergence_box, fixpoint_box])
|
||||
|
||||
layout = dict(title='{}'.format('Known Fixpoint Variation'),
|
||||
titlefont=dict(size=30),
|
||||
legend=dict(
|
||||
orientation="h",
|
||||
x=.1, y=-0.1,
|
||||
font=dict(
|
||||
size=20,
|
||||
color='black'
|
||||
),
|
||||
),
|
||||
boxmode='group',
|
||||
boxgap=0,
|
||||
# barmode='group',
|
||||
bargap=0,
|
||||
xaxis=dict(showgrid=False,
|
||||
zeroline=True,
|
||||
tickangle=0,
|
||||
showticklabels=True),
|
||||
yaxis=dict(
|
||||
title='Steps',
|
||||
zeroline=False,
|
||||
titlefont=dict(
|
||||
size=30
|
||||
)
|
||||
),
|
||||
# height=400, width=400,
|
||||
margin=dict(t=50)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=trace_list, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
try:
|
||||
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
else:
|
||||
pass
|
||||
# This was not a file i should look for.
|
||||
else:
|
||||
# This was either another FilyType or Plot.html alerady exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, plot_box, files_to_look_for=['experiment.dill'])
|
||||
# , 'all_names.dill', 'all_notable_nets.dill'])
|
@ -1,118 +0,0 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
from sklearn.manifold.t_sne import TSNE, PCA
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def line_plot(names_exp_tuple, filename='lineplot'):
|
||||
|
||||
names, line_dict_list = names_exp_tuple
|
||||
|
||||
names = ['Weightwise', 'Aggregating', 'Recurrent']
|
||||
|
||||
if False:
|
||||
data = []
|
||||
base_scale = cl.scales['10']['div']['RdYlGn']
|
||||
scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins
|
||||
for ld_id, line_dict in enumerate(line_dict_list):
|
||||
for data_point in ['ys', 'zs']:
|
||||
trace = go.Scatter(
|
||||
x=line_dict['xs'],
|
||||
y=line_dict[data_point],
|
||||
name='{} {}zero-fixpoints'.format(names[ld_id], 'non-' if data_point == 'zs' else ''),
|
||||
line=dict(
|
||||
# color=scale[ld_id],
|
||||
width=5,
|
||||
# dash='dash' if data_point == 'ys' else ''
|
||||
),
|
||||
)
|
||||
|
||||
data.append(trace)
|
||||
if True:
|
||||
|
||||
data = []
|
||||
base_scale = cl.scales['10']['div']['RdYlGn']
|
||||
scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins
|
||||
for ld_id, line_dict in enumerate(line_dict_list):
|
||||
trace = go.Scatter(
|
||||
x=line_dict['xs'],
|
||||
y=line_dict['ys'],
|
||||
name=names[ld_id],
|
||||
line=dict( # color=scale[ld_id],
|
||||
width=5
|
||||
),
|
||||
)
|
||||
|
||||
data.append(trace)
|
||||
|
||||
layout = dict(xaxis=dict(title='Trains per self-application', titlefont=dict(size=20)),
|
||||
yaxis=dict(title='Average amount of fixpoints found',
|
||||
titlefont=dict(size=20),
|
||||
# type='log',
|
||||
# range=[0, 2]
|
||||
),
|
||||
legend=dict(orientation='h', x=0.3, y=-0.3),
|
||||
# height=800, width=800,
|
||||
margin=dict(b=0)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(absolut_file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
|
||||
names_dill_location = os.path.join(*os.path.split(absolut_file_or_folder)[:-1], 'all_names.dill')
|
||||
with open(names_dill_location, 'rb') as in_f:
|
||||
names = dill.load(in_f)
|
||||
|
||||
try:
|
||||
plotting_function((names, exp), filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
except ValueError:
|
||||
pass
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
# This was either another FilyType or Plot.html alerady exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, line_plot, ["all_data.dill"])
|
||||
|
350
code/network.py
350
code/network.py
@ -1,11 +1,12 @@
|
||||
import numpy as np
|
||||
from abc import abstractmethod, ABC
|
||||
from typing import List, Union
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.callbacks import Callback
|
||||
from keras.layers import SimpleRNN, Dense
|
||||
import keras.backend as K
|
||||
from tensorflow.python.keras.models import Sequential
|
||||
from tensorflow.python.keras.callbacks import Callback
|
||||
from tensorflow.python.keras.layers import SimpleRNN, Dense
|
||||
from tensorflow.python.keras import backend as K
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
|
||||
# Supress warnings and info messages
|
||||
@ -13,12 +14,12 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
|
||||
class SaveStateCallback(Callback):
|
||||
def __init__(self, net, epoch=0):
|
||||
def __init__(self, network, epoch=0):
|
||||
super(SaveStateCallback, self).__init__()
|
||||
self.net = net
|
||||
self.net = network
|
||||
self.init_epoch = epoch
|
||||
|
||||
def on_epoch_end(self, epoch, logs={}):
|
||||
def on_epoch_end(self, epoch, logs=None):
|
||||
description = dict(time=epoch+self.init_epoch)
|
||||
description['action'] = 'train_self'
|
||||
description['counterpart'] = None
|
||||
@ -26,67 +27,116 @@ class SaveStateCallback(Callback):
|
||||
return
|
||||
|
||||
|
||||
class NeuralNetwork(PrintingObject):
|
||||
class Weights:
|
||||
|
||||
@staticmethod
|
||||
def weights_to_string(weights):
|
||||
s = ""
|
||||
for layer_id, layer in enumerate(weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
s += "[ "
|
||||
for weight_id, weight in enumerate(cell):
|
||||
s += str(weight) + " "
|
||||
s += "]"
|
||||
s += "\n"
|
||||
return s
|
||||
def __reshape_flat_array__(array, shapes):
|
||||
sizes: List[int] = [int(np.prod(shape)) for shape in shapes]
|
||||
# Split the incoming array into slices for layers
|
||||
slices = [array[x: y] for x, y in zip(np.cumsum([0]+sizes), np.cumsum([0]+sizes)[1:])]
|
||||
# reshape them in accordance to the given shapes
|
||||
weights = [np.reshape(weight_slice, shape) for weight_slice, shape in zip(slices, shapes)]
|
||||
return weights
|
||||
|
||||
@staticmethod
|
||||
def are_weights_diverged(network_weights):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
if np.isnan(weight):
|
||||
return True
|
||||
if np.isinf(weight):
|
||||
return True
|
||||
return False
|
||||
def __init__(self, weight_vector: Union[List[np.ndarray], np.ndarray], flat_array_shape=None):
|
||||
"""
|
||||
Weight class, for easy manipulation of weight vectors from Keras models
|
||||
|
||||
@staticmethod
|
||||
def are_weights_within(network_weights, lower_bound, upper_bound):
|
||||
for layer_id, layer in enumerate(network_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
# could be a chain comparission "lower_bound <= weight <= upper_bound"
|
||||
if not (lower_bound <= weight and weight <= upper_bound):
|
||||
return False
|
||||
return True
|
||||
:param weight_vector: A numpy array holding weights
|
||||
:type weight_vector: List[np.ndarray]
|
||||
"""
|
||||
self.__iter_idx = [0, 0]
|
||||
if flat_array_shape:
|
||||
weight_vector = self.__reshape_flat_array__(weight_vector, flat_array_shape)
|
||||
|
||||
@staticmethod
|
||||
def fill_weights(old_weights, new_weights_list):
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
self.layers = weight_vector
|
||||
|
||||
# TODO: implement a way to access the cells directly
|
||||
# self.cells = len(self)
|
||||
# TODO: implement a way to access the weights directly
|
||||
# self.weights = self.to_flat_array() ?
|
||||
|
||||
def __iter__(self):
|
||||
self.__iter_idx = [0, 0]
|
||||
return self
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.layers[item]
|
||||
|
||||
def __len__(self):
|
||||
return sum([x.size for x in self.layers])
|
||||
|
||||
def shapes(self):
|
||||
return [x.shape for x in self.layers]
|
||||
|
||||
def num_layers(self):
|
||||
return len(self.layers)
|
||||
|
||||
def __copy__(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def __next__(self):
|
||||
# ToDo: Check iteration progress over layers
|
||||
# ToDo: There is still a problem interation, currently only cell level is the last loop stage.
|
||||
# Do we need this?
|
||||
if self.__iter_idx[0] >= len(self.layers):
|
||||
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
|
||||
raise StopIteration
|
||||
result = self.layers[self.__iter_idx[0]][self.__iter_idx[1]]
|
||||
|
||||
if self.__iter_idx[1] >= len(self.layers[self.__iter_idx[0]]):
|
||||
self.__iter_idx[0] += 1
|
||||
self.__iter_idx[1] = 0
|
||||
else:
|
||||
self.__iter_idx[1] += 1
|
||||
return result
|
||||
|
||||
def __repr__(self):
|
||||
return f'Weights({self.to_flat_array().tolist()})'
|
||||
|
||||
def to_flat_array(self) -> np.ndarray:
|
||||
return np.hstack([weight.flatten() for weight in self.layers])
|
||||
|
||||
def from_flat_array(self, array):
|
||||
new_weights = self.__reshape_flat_array__(array, self.shapes())
|
||||
return new_weights
|
||||
|
||||
def are_diverged(self):
|
||||
return any([np.isnan(x).any() for x in self.layers]) or any([np.isinf(x).any() for x in self.layers])
|
||||
|
||||
def are_within_bounds(self, lower_bound: float, upper_bound: float):
|
||||
return bool(sum([((lower_bound < x) & (x > upper_bound)).size for x in self.layers]))
|
||||
|
||||
def apply_new_weights(self, weights: np.ndarray):
|
||||
# TODO: Make this more Pythonic
|
||||
new_weights = copy.deepcopy(self.layers)
|
||||
current_weight_id = 0
|
||||
for layer_id, layer in enumerate(new_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights_list[current_weight_id]
|
||||
new_weight = weights[current_weight_id]
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
current_weight_id += 1
|
||||
return new_weights
|
||||
|
||||
|
||||
class NeuralNetwork(ABC):
|
||||
"""
|
||||
This is the Base Network Class, including abstract functions that must be implemented.
|
||||
"""
|
||||
|
||||
def __init__(self, **params):
|
||||
super().__init__()
|
||||
self.params = dict(epsilon=0.00000000000001)
|
||||
self.params.update(params)
|
||||
self.keras_params = dict(activation='linear', use_bias=False)
|
||||
self.states = []
|
||||
self.model: Sequential
|
||||
|
||||
def get_model(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_params(self):
|
||||
def get_params(self) -> dict:
|
||||
return self.params
|
||||
|
||||
def get_keras_params(self):
|
||||
def get_keras_params(self) -> dict:
|
||||
return self.keras_params
|
||||
|
||||
def with_params(self, **kwargs):
|
||||
@ -97,96 +147,96 @@ class NeuralNetwork(PrintingObject):
|
||||
self.keras_params.update(kwargs)
|
||||
return self
|
||||
|
||||
def get_weights(self):
|
||||
return self.model.get_weights()
|
||||
def get_weights(self) -> Weights:
|
||||
return Weights(self.model.get_weights())
|
||||
|
||||
def get_weights_flat(self):
|
||||
return np.hstack([weight.flatten() for weight in self.get_weights()])
|
||||
def get_weights_flat(self) -> np.ndarray:
|
||||
return self.get_weights().to_flat_array()
|
||||
|
||||
def set_weights(self, new_weights):
|
||||
def set_weights(self, new_weights: Weights):
|
||||
return self.model.set_weights(new_weights)
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
@abstractmethod
|
||||
def apply_to_weights(self, old_weights) -> Weights:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_to_network(self, other_network):
|
||||
def apply_to_network(self, other_network) -> Weights:
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is applied?
|
||||
new_weights = self.apply_to_weights(other_network.get_weights())
|
||||
return new_weights
|
||||
|
||||
def attack(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is an attack?
|
||||
other_network.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def fuck(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is fucking?
|
||||
self.set_weights(self.apply_to_network(other_network))
|
||||
return self
|
||||
|
||||
def self_attack(self, iterations=1):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is self attack?
|
||||
for _ in range(iterations):
|
||||
self.attack(self)
|
||||
return self
|
||||
|
||||
def meet(self, other_network):
|
||||
# TODO: add a dogstring, telling the user what this does, e.g. what is meeting?
|
||||
new_other_network = copy.deepcopy(other_network)
|
||||
return self.attack(new_other_network)
|
||||
|
||||
def is_diverged(self):
|
||||
return self.are_weights_diverged(self.get_weights())
|
||||
return self.get_weights().are_diverged()
|
||||
|
||||
def is_zero(self, epsilon=None):
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
return self.are_weights_within(self.get_weights(), -epsilon, epsilon)
|
||||
return self.get_weights().are_within_bounds(-epsilon, epsilon)
|
||||
|
||||
def is_fixpoint(self, degree=1, epsilon=None):
|
||||
def is_fixpoint(self, degree: int = 1, epsilon: float = None) -> bool:
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
old_weights = self.get_weights()
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if new_weights.are_diverged():
|
||||
return False
|
||||
|
||||
if NeuralNetwork.are_weights_diverged(new_weights):
|
||||
return False
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
for cell_id, cell in enumerate(layer):
|
||||
for weight_id, weight in enumerate(cell):
|
||||
new_weight = new_weights[layer_id][cell_id][weight_id]
|
||||
if abs(new_weight - weight) >= epsilon:
|
||||
return False
|
||||
return True
|
||||
biggerEpsilon = (np.abs(new_weights.to_flat_array() - self.get_weights().to_flat_array()) >= epsilon).any()
|
||||
|
||||
def repr_weights(self, weights=None):
|
||||
return self.weights_to_string(weights or self.get_weights())
|
||||
# Boolean Value needs to be flipped to answer "is_fixpoint"
|
||||
return not biggerEpsilon
|
||||
|
||||
def print_weights(self, weights=None):
|
||||
print(self.repr_weights(weights))
|
||||
print(weights or self.get_weights())
|
||||
|
||||
|
||||
class ParticleDecorator:
|
||||
next_uid = 0
|
||||
|
||||
def __init__(self, net):
|
||||
def __init__(self, network):
|
||||
|
||||
# ToDo: Add DocString, What does it do?
|
||||
|
||||
self.uid = self.__class__.next_uid
|
||||
self.__class__.next_uid += 1
|
||||
self.net = net
|
||||
self.network = network
|
||||
self.states = []
|
||||
self.save_state(time=0,
|
||||
action='init',
|
||||
counterpart=None
|
||||
)
|
||||
self.save_state(time=0, action='init', counterpart=None)
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.net, name)
|
||||
return getattr(self.network, name)
|
||||
|
||||
def get_uid(self):
|
||||
return self.uid
|
||||
|
||||
def make_state(self, **kwargs):
|
||||
weights = self.net.get_weights_flat()
|
||||
if any(np.isinf(weights)) or any(np.isnan(weights)):
|
||||
if self.network.is_diverged():
|
||||
return None
|
||||
state = {'class': self.net.__class__.__name__, 'weights': weights}
|
||||
state = {'class': self.network.__class__.__name__, 'weights': self.network.get_weights_flat()}
|
||||
state.update(kwargs)
|
||||
return state
|
||||
|
||||
@ -196,6 +246,7 @@ class ParticleDecorator:
|
||||
self.states += [state]
|
||||
else:
|
||||
pass
|
||||
return True
|
||||
|
||||
def update_state(self, number, **kwargs):
|
||||
raise NotImplementedError('Result is vague')
|
||||
@ -212,81 +263,33 @@ class ParticleDecorator:
|
||||
|
||||
class WeightwiseNeuralNetwork(NeuralNetwork):
|
||||
|
||||
@staticmethod
|
||||
def normalize_id(value, norm):
|
||||
if norm > 1:
|
||||
return float(value) / float(norm)
|
||||
else:
|
||||
return float(value)
|
||||
|
||||
def __init__(self, width, depth, **kwargs):
|
||||
# ToDo: Insert Docstring
|
||||
super().__init__(**kwargs)
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.width: int = width
|
||||
self.depth: int = depth
|
||||
self.model = Sequential()
|
||||
self.model.add(Dense(units=self.width, input_dim=4, **self.keras_params))
|
||||
for _ in range(self.depth-1):
|
||||
self.model.add(Dense(units=self.width, **self.keras_params))
|
||||
self.model.add(Dense(units=1, **self.keras_params))
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
def apply(self, inputs):
|
||||
# TODO: Write about it... What does it do?
|
||||
return self.model.predict(inputs)
|
||||
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[inputs[0]], [inputs[1]], [inputs[2]], [inputs[3]]]))
|
||||
return self.model.predict(stuff)[0][0]
|
||||
|
||||
@classmethod
|
||||
def compute_all_duplex_weight_points(cls, old_weights):
|
||||
points = []
|
||||
normal_points = []
|
||||
max_layer_id = len(old_weights) - 1
|
||||
for layer_id, layer in enumerate(old_weights):
|
||||
max_cell_id = len(layer) - 1
|
||||
for cell_id, cell in enumerate(layer):
|
||||
max_weight_id = len(cell) - 1
|
||||
for weight_id, weight in enumerate(cell):
|
||||
normal_layer_id = cls.normalize_id(layer_id, max_layer_id)
|
||||
normal_cell_id = cls.normalize_id(cell_id, max_cell_id)
|
||||
normal_weight_id = cls.normalize_id(weight_id, max_weight_id)
|
||||
|
||||
points += [[weight, layer_id, cell_id, weight_id]]
|
||||
normal_points += [[weight, normal_layer_id, normal_cell_id, normal_weight_id]]
|
||||
return points, normal_points
|
||||
|
||||
@classmethod
|
||||
def compute_all_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[0]
|
||||
|
||||
@classmethod
|
||||
def compute_all_normal_weight_points(cls, all_weights):
|
||||
return cls.compute_all_duplex_weight_points(all_weights)[1]
|
||||
|
||||
def apply_to_weights(self, old_weights):
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
for (weight_point, normal_weight_point) in zip(*self.__class__.compute_all_duplex_weight_points(old_weights)):
|
||||
weight, layer_id, cell_id, weight_id = weight_point
|
||||
_, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
new_weight = self.apply(*normal_weight_point)
|
||||
new_weights[layer_id][cell_id][weight_id] = new_weight
|
||||
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight {weight}\t @ ({layer},{cell},{weight_id}) "
|
||||
"to new value {new_weight}\t calling @ ({normal_layer},{normal_cell},{normal_weight_id})").format(
|
||||
weight=weight, layer=layer_id, cell=cell_id, weight_id=weight_id, new_weight=new_weight,
|
||||
normal_layer=normal_layer_id, normal_cell=normal_cell_id, normal_weight_id=normal_weight_id)
|
||||
return new_weights
|
||||
|
||||
def compute_samples(self):
|
||||
samples = []
|
||||
for normal_weight_point in self.compute_all_normal_weight_points(self.get_weights()):
|
||||
weight, normal_layer_id, normal_cell_id, normal_weight_id = normal_weight_point
|
||||
|
||||
sample = np.transpose(np.array([[weight], [normal_layer_id], [normal_cell_id], [normal_weight_id]]))
|
||||
samples += [sample[0]]
|
||||
samples_array = np.asarray(samples)
|
||||
return samples_array, samples_array[:, 0]
|
||||
def apply_to_weights(self, weights) -> Weights:
|
||||
# ToDo: Insert DocString
|
||||
# Transform the weight matrix in an horizontal stack as: array([[weight, layer, cell, position], ...])
|
||||
transformed_weights = np.asarray([
|
||||
[weight, idx, *x] for idx, layer in enumerate(weights.layers) for x, weight in np.ndenumerate(layer)
|
||||
])
|
||||
# normalize [layer, cell, position]
|
||||
for idx in range(1, transformed_weights.shape[1]):
|
||||
transformed_weights[:, idx] = transformed_weights[:, idx] / np.max(transformed_weights[:, idx])
|
||||
new_weights = self.apply(transformed_weights)
|
||||
# use the original weight shape to transform the new tensor
|
||||
return Weights(new_weights, flat_array_shape=weights.shapes())
|
||||
|
||||
|
||||
class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
@ -332,9 +335,6 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
self.model.add(Dense(units=width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def get_aggregator(self):
|
||||
return self.params.get('aggregator', self.aggregate_average)
|
||||
|
||||
@ -378,11 +378,11 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
new_weights = self.fill_weights(old_weights, new_weights_list)
|
||||
|
||||
# return results
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight aggregations " + str(old_aggregations))
|
||||
print("to new weight aggregations " + str(new_aggregations))
|
||||
print("resulting in network weights ...")
|
||||
print(self.weights_to_string(new_weights))
|
||||
# if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
# print("updated old weight aggregations " + str(old_aggregations))
|
||||
# print("to new weight aggregations " + str(new_aggregations))
|
||||
# print("resulting in network weights ...")
|
||||
# print(self.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
@staticmethod
|
||||
@ -420,23 +420,23 @@ class AggregatingNeuralNetwork(NeuralNetwork):
|
||||
assert degree >= 1, "degree must be >= 1"
|
||||
epsilon = epsilon or self.get_params().get('epsilon')
|
||||
|
||||
old_weights = self.get_weights()
|
||||
old_aggregations, _ = self.get_aggregated_weights()
|
||||
new_weights = copy.deepcopy(self.get_weights())
|
||||
|
||||
new_weights = copy.deepcopy(old_weights)
|
||||
for _ in range(degree):
|
||||
new_weights = self.apply_to_weights(new_weights)
|
||||
if NeuralNetwork.are_weights_diverged(new_weights):
|
||||
return False
|
||||
if new_weights.are_diverged():
|
||||
return False
|
||||
|
||||
# ToDo: Explain This, what the heck is happening?
|
||||
collection_size = self.get_amount_of_weights() // self.aggregates
|
||||
collections, leftovers = self.__class__.collect_weights(new_weights, collection_size)
|
||||
new_aggregations = [self.get_aggregator()(collection) for collection in collections]
|
||||
|
||||
for aggregation_id, old_aggregation in enumerate(old_aggregations):
|
||||
new_aggregation = new_aggregations[aggregation_id]
|
||||
if abs(new_aggregation - old_aggregation) >= epsilon:
|
||||
return False, new_aggregations
|
||||
return True, new_aggregations
|
||||
# ToDo: Explain This, why are you additionally checking tolerances of aggregated weights?
|
||||
biggerEpsilon = (np.abs(np.asarray(old_aggregations) - np.asarray(new_aggregations)) >= epsilon).any()
|
||||
# Boolean value hast to be flipped to answer the question.
|
||||
return True, not biggerEpsilon
|
||||
|
||||
|
||||
class FFTNeuralNetwork(NeuralNetwork):
|
||||
@ -473,9 +473,6 @@ class FFTNeuralNetwork(NeuralNetwork):
|
||||
self.model.add(Dense(units=width, **self.keras_params))
|
||||
self.model.add(Dense(units=self.aggregates, **self.keras_params))
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def get_shuffler(self):
|
||||
return self.params.get('shuffler', self.shuffle_not)
|
||||
|
||||
@ -508,11 +505,11 @@ class FFTNeuralNetwork(NeuralNetwork):
|
||||
new_weights = self.fill_weights(old_weights, new_weights_list)
|
||||
|
||||
# return results
|
||||
if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
print("updated old weight aggregations " + str(old_aggregation))
|
||||
print("to new weight aggregations " + str(new_aggregation))
|
||||
print("resulting in network weights ...")
|
||||
print(self.__class__.weights_to_string(new_weights))
|
||||
# if self.params.get("print_all_weight_updates", False) and not self.is_silent():
|
||||
# print("updated old weight aggregations " + str(old_aggregation))
|
||||
# print("to new weight aggregations " + str(new_aggregation))
|
||||
# print("resulting in network weights ...")
|
||||
# print(self.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
def compute_samples(self):
|
||||
@ -534,9 +531,6 @@ class RecurrentNeuralNetwork(NeuralNetwork):
|
||||
self.model.add(SimpleRNN(units=width, return_sequences=True, **self.keras_params))
|
||||
self.model.add(SimpleRNN(units=self.features, return_sequences=True, **self.keras_params))
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def apply(self, *inputs):
|
||||
stuff = np.transpose(np.array([[[inputs[i]] for i in range(len(inputs))]]))
|
||||
return self.model.predict(stuff)[0].flatten()
|
||||
@ -645,7 +639,7 @@ if __name__ == '__main__':
|
||||
K.clear_session()
|
||||
exp.log(exp.counters)
|
||||
|
||||
if True:
|
||||
if False:
|
||||
# Aggregating Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
@ -655,7 +649,7 @@ if __name__ == '__main__':
|
||||
K.clear_session()
|
||||
exp.log(exp.counters)
|
||||
|
||||
if True:
|
||||
if False:
|
||||
#FFT Neural Network
|
||||
with FixpointExperiment() as exp:
|
||||
for run_id in tqdm(range(100)):
|
||||
@ -665,7 +659,7 @@ if __name__ == '__main__':
|
||||
K.clear_session()
|
||||
exp.log(exp.counters)
|
||||
|
||||
if True:
|
||||
if False:
|
||||
# ok so this works quite realiably
|
||||
with FixpointExperiment() as exp:
|
||||
for i in range(1):
|
||||
|
@ -4,7 +4,6 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
|
@ -3,16 +3,18 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
|
||||
def count(counters, net, notable_nets=None):
|
||||
notable_nets = notable_nets or []
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
@ -52,7 +54,7 @@ if __name__ == '__main__':
|
||||
net = ParticleDecorator(net)
|
||||
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
|
||||
count(counters, net, notable_nets)
|
||||
keras.backend.clear_session()
|
||||
K.clear_session()
|
||||
all_counters += [counters]
|
||||
# all_notable_nets += [notable_nets]
|
||||
all_names += [name]
|
||||
|
@ -5,12 +5,11 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import prng
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
from statistics import mean
|
||||
@ -85,7 +84,7 @@ if __name__ == '__main__':
|
||||
exp.ys += [time_to_something]
|
||||
# time steps still regarded as sthe initial fix-point
|
||||
exp.zs += [time_as_fixpoint]
|
||||
keras.backend.clear_session()
|
||||
K.backend.clear_session()
|
||||
current_scale /= 10.0
|
||||
for d in range(exp.depth):
|
||||
exp.log('variation 10e-' + str(d))
|
||||
|
@ -6,13 +6,12 @@ sys.path += os.path.join('..', '.')
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import *
|
||||
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
from statistics import mean
|
||||
avg = mean
|
||||
@ -28,7 +27,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, soup, notable_nets=[]):
|
||||
def count(counters, soup, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@ -40,6 +39,7 @@ def count(counters, soup, notable_nets=[]):
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
for net in soup.particles:
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
|
@ -6,11 +6,10 @@ from typing import Tuple
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
@ -23,7 +22,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
def count(counters, net, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@ -34,7 +33,7 @@ def count(counters, net, notable_nets=[]):
|
||||
:rtype Tuple[dict, list]
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
|
@ -6,12 +6,11 @@ sys.path += os.path.join('..', '.')
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
@ -24,7 +23,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, soup, notable_nets=[]):
|
||||
def count(counters, soup, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@ -36,6 +35,7 @@ def count(counters, soup, notable_nets=[]):
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
for net in soup.particles:
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
|
@ -4,16 +4,16 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend as K
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
def count(counters, net, notable_nets=None):
|
||||
notable_nets = notable_nets or list()
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
|
@ -61,7 +61,7 @@ class LearningNeuralNetwork(NeuralNetwork):
|
||||
print("updated old weight aggregations " + str(old_aggregation))
|
||||
print("to new weight aggregations " + str(new_aggregation))
|
||||
print("resulting in network weights ...")
|
||||
print(self.__class__.weights_to_string(new_weights))
|
||||
print(self.weights_to_string(new_weights))
|
||||
return new_weights
|
||||
|
||||
def with_compile_params(self, **kwargs):
|
||||
|
39
code/util.py
39
code/util.py
@ -1,39 +0,0 @@
|
||||
class PrintingObject:
|
||||
|
||||
class SilenceSignal():
|
||||
def __init__(self, obj, value):
|
||||
self.obj = obj
|
||||
self.new_silent = value
|
||||
def __enter__(self):
|
||||
self.old_silent = self.obj.get_silence()
|
||||
self.obj.set_silence(self.new_silent)
|
||||
def __exit__(self, exception_type, exception_value, traceback):
|
||||
self.obj.set_silence(self.old_silent)
|
||||
|
||||
def __init__(self):
|
||||
self.silent = True
|
||||
|
||||
def is_silent(self):
|
||||
return self.silent
|
||||
|
||||
def get_silence(self):
|
||||
return self.is_silent()
|
||||
|
||||
def set_silence(self, value=True):
|
||||
self.silent = value
|
||||
return self
|
||||
|
||||
def unset_silence(self):
|
||||
self.silent = False
|
||||
return self
|
||||
|
||||
def with_silence(self, value=True):
|
||||
self.set_silence(value)
|
||||
return self
|
||||
|
||||
def silence(self, value=True):
|
||||
return self.__class__.SilenceSignal(self, value)
|
||||
|
||||
def _print(self, *args, **kwargs):
|
||||
if not self.silent:
|
||||
print(*args, **kwargs)
|
@ -1,283 +0,0 @@
|
||||
import os
|
||||
|
||||
from experiment import Experiment
|
||||
# noinspection PyUnresolvedReferences
|
||||
from soup import Soup
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import numpy as np
|
||||
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
|
||||
import colorlover as cl
|
||||
|
||||
import dill
|
||||
|
||||
from sklearn.manifold.t_sne import TSNE, PCA
|
||||
|
||||
|
||||
def build_args():
|
||||
arg_parser = ArgumentParser()
|
||||
arg_parser.add_argument('-i', '--in_file', nargs=1, type=str)
|
||||
arg_parser.add_argument('-o', '--out_file', nargs='?', default='out', type=str)
|
||||
return arg_parser.parse_args()
|
||||
|
||||
|
||||
def build_from_soup_or_exp(soup):
|
||||
particles = soup.historical_particles
|
||||
particle_list = []
|
||||
for particle in particles.values():
|
||||
particle_dict = dict(
|
||||
trajectory=[event['weights'] for event in particle],
|
||||
time=[event['time'] for event in particle],
|
||||
action=[event.get('action', None) for event in particle],
|
||||
counterpart=[event.get('counterpart', None) for event in particle]
|
||||
)
|
||||
if any([x is not None for x in particle_dict['counterpart']]):
|
||||
print('counterpart')
|
||||
particle_list.append(particle_dict)
|
||||
return particle_list
|
||||
|
||||
|
||||
def plot_latent_trajectories(soup_or_experiment, filename='latent_trajectory_plot'):
|
||||
assert isinstance(soup_or_experiment, (Experiment, Soup))
|
||||
bupu = cl.scales['11']['div']['RdYlGn']
|
||||
data_dict = build_from_soup_or_exp(soup_or_experiment)
|
||||
scale = cl.interp(bupu, len(data_dict)+1) # Map color scale to N bins
|
||||
|
||||
# Fit the mebedding space
|
||||
transformer = TSNE()
|
||||
for particle_dict in data_dict:
|
||||
array = np.asarray([np.hstack([x.flatten() for x in timestamp]).flatten()
|
||||
for timestamp in particle_dict['trajectory']])
|
||||
particle_dict['trajectory'] = array
|
||||
transformer.fit(array)
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for p_id, particle_dict in enumerate(data_dict):
|
||||
transformed = transformer._fit(np.asarray(particle_dict['trajectory']))
|
||||
line_trace = go.Scatter(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
text='Hovertext goes here'.format(),
|
||||
line=dict(color=scale[p_id]),
|
||||
# legendgroup='Position -{}'.format(pos),
|
||||
name='Particle - {}'.format(p_id),
|
||||
showlegend=True,
|
||||
# hoverinfo='text',
|
||||
mode='lines')
|
||||
line_start = go.Scatter(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
||||
marker=dict(
|
||||
color='rgb(255, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
line_end = go.Scatter(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
|
||||
marker=dict(
|
||||
color='rgb(0, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
data.extend([line_trace, line_start, line_end])
|
||||
|
||||
layout = dict(title='{} - Latent Trajectory Movement'.format('Penis'),
|
||||
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||
# import plotly.io as pio
|
||||
# pio.write_image(fig, filename)
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def plot_latent_trajectories_3D(soup_or_experiment, filename='plot'):
|
||||
def norm(val, a=0, b=0.25):
|
||||
return (val - a) / (b - a)
|
||||
|
||||
data_list = build_from_soup_or_exp(soup_or_experiment)
|
||||
if not data_list:
|
||||
return
|
||||
|
||||
base_scale = cl.scales['9']['div']['RdYlGn']
|
||||
# base_scale = cl.scales['9']['qual']['Set1']
|
||||
scale = cl.interp(base_scale, len(data_list)+1) # Map color scale to N bins
|
||||
|
||||
# Fit the embedding space
|
||||
transformer = PCA(n_components=2)
|
||||
|
||||
array = []
|
||||
for particle_dict in data_list:
|
||||
array.append(particle_dict['trajectory'])
|
||||
|
||||
transformer.fit(np.vstack(array))
|
||||
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
for p_id, particle_dict in enumerate(data_list):
|
||||
transformed = transformer.transform(particle_dict['trajectory'])
|
||||
line_trace = go.Scatter3d(
|
||||
x=transformed[:, 0],
|
||||
y=transformed[:, 1],
|
||||
z=np.asarray(particle_dict['time']),
|
||||
text='Particle: {}<br> It had {} lifes.'.format(p_id, len(particle_dict['trajectory'])),
|
||||
line=dict(
|
||||
color=scale[p_id],
|
||||
width=4
|
||||
),
|
||||
# legendgroup='Particle - {}'.format(p_id),
|
||||
name='Particle -{}'.format(p_id),
|
||||
showlegend=False,
|
||||
hoverinfo='text',
|
||||
mode='lines')
|
||||
|
||||
line_start = go.Scatter3d(mode='markers', x=[transformed[0, 0]], y=[transformed[0, 1]],
|
||||
z=np.asarray(particle_dict['time'][0]),
|
||||
marker=dict(
|
||||
color='rgb(255, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
|
||||
line_end = go.Scatter3d(mode='markers', x=[transformed[-1, 0]], y=[transformed[-1, 1]],
|
||||
z=np.asarray(particle_dict['time'][-1]),
|
||||
marker=dict(
|
||||
color='rgb(0, 0, 0)',
|
||||
size=4
|
||||
),
|
||||
showlegend=False
|
||||
)
|
||||
|
||||
data.extend([line_trace, line_start, line_end])
|
||||
|
||||
axis_layout = dict(gridcolor='rgb(255, 255, 255)',
|
||||
gridwidth=3,
|
||||
zerolinecolor='rgb(255, 255, 255)',
|
||||
showbackground=True,
|
||||
backgroundcolor='rgb(230, 230,230)',
|
||||
titlefont=dict(
|
||||
color='black',
|
||||
size=30
|
||||
)
|
||||
)
|
||||
|
||||
layout = go.Layout(scene=dict(
|
||||
# aspectratio=dict(x=2, y=2, z=2),
|
||||
xaxis=dict(title='Transformed X', **axis_layout),
|
||||
yaxis=dict(title='Transformed Y', **axis_layout),
|
||||
zaxis=dict(title='Epoch', **axis_layout)),
|
||||
# title='{} - Latent Trajectory Movement'.format('Soup'),
|
||||
|
||||
width=1024, height=1024,
|
||||
margin=dict(l=0, r=0, b=0, t=0)
|
||||
)
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename, validate=True)
|
||||
pass
|
||||
|
||||
|
||||
def plot_histogram(bars_dict_list, filename='histogram_plot'):
|
||||
# catagorical
|
||||
ryb = cl.scales['10']['div']['RdYlBu']
|
||||
|
||||
data = []
|
||||
for bar_id, bars_dict in bars_dict_list:
|
||||
hist = go.Histogram(
|
||||
histfunc="count",
|
||||
y=bars_dict.get('value', 14),
|
||||
x=bars_dict.get('name', 'gimme a name'),
|
||||
showlegend=False,
|
||||
marker=dict(
|
||||
color=ryb[bar_id]
|
||||
),
|
||||
)
|
||||
data.append(hist)
|
||||
|
||||
layout=dict(title='{} Histogram Plot'.format('Experiment Name Penis'),
|
||||
height=400, width=400, margin=dict(l=0, r=0, t=0, b=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def line_plot(line_dict_list, filename='lineplot'):
|
||||
# lines with standard deviation
|
||||
# Transform data accordingly and plot it
|
||||
data = []
|
||||
rdylgn = cl.scales['10']['div']['RdYlGn']
|
||||
rdylgn_background = [scale + (0.4,) for scale in cl.to_numeric(rdylgn)]
|
||||
for line_id, line_dict in enumerate(line_dict_list):
|
||||
name = line_dict.get('name', 'gimme a name')
|
||||
|
||||
upper_bound = go.Scatter(
|
||||
name='Upper Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['upper_y'],
|
||||
mode='lines',
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
)
|
||||
|
||||
trace = go.Scatter(
|
||||
x=line_dict['x'],
|
||||
y=line_dict['main_y'],
|
||||
mode='lines',
|
||||
name=name,
|
||||
line=dict(color=line_id),
|
||||
fillcolor=rdylgn_background[line_id],
|
||||
fill='tonexty')
|
||||
|
||||
lower_bound = go.Scatter(
|
||||
name='Lower Bound',
|
||||
x=line_dict['x'],
|
||||
y=line_dict['lower_y'],
|
||||
marker=dict(color="#444"),
|
||||
line=dict(width=0),
|
||||
mode='lines')
|
||||
|
||||
data.extend([upper_bound, trace, lower_bound])
|
||||
|
||||
layout=dict(title='{} Line Plot'.format('Experiment Name Penis'),
|
||||
height=800, width=800, margin=dict(l=0, r=0, t=0, b=0))
|
||||
|
||||
fig = go.Figure(data=data, layout=layout)
|
||||
pl.offline.plot(fig, auto_open=True, filename=filename)
|
||||
pass
|
||||
|
||||
|
||||
def search_and_apply(absolut_file_or_folder, plotting_function, files_to_look_for=[]):
|
||||
if os.path.isdir(absolut_file_or_folder):
|
||||
for sub_file_or_folder in os.scandir(absolut_file_or_folder):
|
||||
search_and_apply(sub_file_or_folder.path, plotting_function, files_to_look_for=files_to_look_for)
|
||||
elif absolut_file_or_folder.endswith('.dill'):
|
||||
file_or_folder = os.path.split(absolut_file_or_folder)[-1]
|
||||
if file_or_folder in files_to_look_for and not os.path.exists('{}.html'.format(absolut_file_or_folder[:-5])):
|
||||
print('Apply Plotting function "{func}" on file "{file}"'.format(func=plotting_function.__name__,
|
||||
file=absolut_file_or_folder)
|
||||
)
|
||||
with open(absolut_file_or_folder, 'rb') as in_f:
|
||||
exp = dill.load(in_f)
|
||||
try:
|
||||
plotting_function(exp, filename='{}.html'.format(absolut_file_or_folder[:-5]))
|
||||
except ValueError:
|
||||
pass
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
# This was either another FilyType or Plot.html alerady exists.
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = build_args()
|
||||
in_file = args.in_file[0]
|
||||
out_file = args.out_file
|
||||
|
||||
search_and_apply(in_file, plot_latent_trajectories_3D, ["trajectorys.dill", "soup.dill"])
|
Loading…
x
Reference in New Issue
Block a user