fig fixture
@ -47,7 +47,7 @@ def plot_bars(names_bars_tuple, filename='histogram_plot'):
|
||||
)
|
||||
data.append(bar)
|
||||
|
||||
layout = dict(xaxis=dict(title="Fixpoints", titlefont=dict(size=20)),
|
||||
layout = dict(xaxis=dict(title="Networks", titlefont=dict(size=20)),
|
||||
barmode='stack',
|
||||
# height=400, width=400,
|
||||
# margin=dict(l=20, r=20, t=20, b=20)
|
||||
|
@ -79,7 +79,7 @@ def plot_box(exp: Experiment, filename='histogram_plot'):
|
||||
tickangle=0,
|
||||
showticklabels=True),
|
||||
yaxis=dict(
|
||||
title='Occurences',
|
||||
title='Steps',
|
||||
zeroline=False,
|
||||
titlefont=dict(
|
||||
size=30
|
||||
|
@ -28,21 +28,38 @@ def line_plot(names_exp_tuple, filename='lineplot'):
|
||||
|
||||
names, line_dict_list = names_exp_tuple
|
||||
|
||||
names = ['Weightwise', 'Aggregating']
|
||||
names = ['Weightwise', 'Aggregating', 'Recurrent']
|
||||
|
||||
data = []
|
||||
base_scale = cl.scales['10']['div']['RdYlGn']
|
||||
scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins
|
||||
for ld_id, line_dict in enumerate(line_dict_list):
|
||||
for data_point in ['ys', 'zs']:
|
||||
if False:
|
||||
data = []
|
||||
base_scale = cl.scales['10']['div']['RdYlGn']
|
||||
scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins
|
||||
for ld_id, line_dict in enumerate(line_dict_list):
|
||||
for data_point in ['ys', 'zs']:
|
||||
trace = go.Scatter(
|
||||
x=line_dict['xs'],
|
||||
y=line_dict[data_point],
|
||||
name='{} {}zero-fixpoints'.format(names[ld_id], 'non-' if data_point == 'zs' else ''),
|
||||
line=dict(
|
||||
# color=scale[ld_id],
|
||||
width=5,
|
||||
# dash='dash' if data_point == 'ys' else ''
|
||||
),
|
||||
)
|
||||
|
||||
data.append(trace)
|
||||
if True:
|
||||
|
||||
data = []
|
||||
base_scale = cl.scales['10']['div']['RdYlGn']
|
||||
scale = cl.interp(base_scale, len(line_dict_list) + 1) # Map color scale to N bins
|
||||
for ld_id, line_dict in enumerate(line_dict_list):
|
||||
trace = go.Scatter(
|
||||
x=line_dict['xs'],
|
||||
y=line_dict[data_point],
|
||||
name='{} {}zero-fixpoints'.format(names[ld_id], 'non-' if data_point == 'zs' else ''),
|
||||
line=dict(
|
||||
# color=scale[ld_id],
|
||||
width=5,
|
||||
# dash='dash' if data_point == 'ys' else ''
|
||||
y=line_dict['ys'],
|
||||
name=names[ld_id],
|
||||
line=dict( # color=scale[ld_id],
|
||||
width=5
|
||||
),
|
||||
)
|
||||
|
||||
|
BIN
code/results/Soup/experiment.dill
Normal file
1
code/results/Soup/log.txt
Normal file
@ -0,0 +1 @@
|
||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 13, 'fix_sec': 0, 'other': 7}
|
BIN
code/results/Soup/soup.dill
Normal file
7
code/results/Soup/soup.html
Normal file
30
code/results/Soup/weights.txt
Normal file
@ -0,0 +1,30 @@
|
||||
[-0.15321673 1.0428386 -0.7245892 -0.04343993 0.42338863 0.02538261
|
||||
-0.40465942 -0.0242596 -1.226809 -0.8168446 0.26588777 -1.0929432
|
||||
0.5383322 -0.73875046]
|
||||
[-0.03072096 -1.369665 -0.357126 -0.21180922 0.3853204 0.22853081
|
||||
-0.3705557 -0.21977347 -0.6684716 0.12849599 1.0226644 -0.0922638
|
||||
-0.7828449 -0.6572327 ]
|
||||
[-1.2444692 0.61213857 0.07965802 0.12361202 0.62641835 0.9720597
|
||||
0.3863232 0.59948945 1.0857513 0.49231085 -0.5319295 0.29433587
|
||||
-0.64177823 0.17603302]
|
||||
[-0.9938292 -0.4438207 -0.03172896 0.06261964 -0.3870194 0.7637992
|
||||
0.0244509 -0.04825407 0.91551745 -0.78740424 0.29226422 -0.52767307
|
||||
-0.41744384 0.5567152 ]
|
||||
[-0.39049304 0.8842579 -0.8447943 -0.19669186 0.7207061 0.16780053
|
||||
0.3728221 0.08680353 0.7535456 -0.1000197 0.02029054 0.8640245
|
||||
-0.15881588 1.1905665 ]
|
||||
[ 1.0482084 0.9248296 -0.26946014 0.57047915 -0.32660747 0.6914731
|
||||
-0.18025818 0.3816289 -0.69358927 0.21312684 -0.39932403 -0.02991759
|
||||
-0.83068466 0.45619962]
|
||||
[ 0.75814664 0.10328437 0.07867077 -0.0743314 -0.53440267 0.50492585
|
||||
-0.54172474 0.51184535 0.3462249 1.0527638 -0.9503541 0.9235086
|
||||
-0.1665241 1.1497779 ]
|
||||
[-0.77187353 1.1105504 0.24265823 0.53782856 -0.34098852 -0.75576884
|
||||
-0.25396293 -0.56288165 0.3851537 -0.67497945 0.14336896 0.763481
|
||||
-0.9224985 0.6374753 ]
|
||||
[-0.79123825 0.68166596 -0.30061013 -0.19360289 0.5632736 0.36276665
|
||||
0.7470975 0.48115698 0.10046808 -0.8064349 -1.036736 -0.68296516
|
||||
-1.156437 0.52633154]
|
||||
[ 0.1788832 -1.5321186 -0.62001514 -0.3870902 0.97524184 0.6088638
|
||||
-0.08297889 -0.05180515 -0.29096788 0.7519439 0.8803648 0.82771575
|
||||
-0.854887 0.1742936 ]
|
BIN
code/results/apply_fixpoints.png
Normal file
After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,12 @@
|
||||
WeightwiseNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 23, 'fix_zero': 27, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
AggregatingNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 4, 'fix_zero': 46, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
RecurrentNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 46, 'fix_zero': 4, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
@ -0,0 +1,4 @@
|
||||
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
|
||||
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'zs': [0.0, 1.2, 5.2, 7.4, 8.1, 9.1, 9.6, 9.8, 10.0, 9.9, 9.9]}
|
||||
|
||||
|
BIN
code/results/exp-learn-from-soup-_1552658566.5572753-0/soup.dill
Normal file
BIN
code/results/exp-learn-from-soup-_1552658566.5572753-0/soup.png
Normal file
After Width: | Height: | Size: 207 KiB |
@ -0,0 +1,12 @@
|
||||
WeightwiseNeuralNetwork activiation='linear' use_bias=False
|
||||
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [0.2, 0.3, 0.15, 0.55, 0.7, 0.85, 0.8, 0.95, 0.9, 1.0, 1.0]}
|
||||
|
||||
|
||||
AggregatingNeuralNetwork activiation='linear' use_bias=False
|
||||
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [1.0, 0.95, 1.0, 1.0, 0.95, 0.9, 0.8, 1.0, 0.85, 1.0, 0.9]}
|
||||
|
||||
|
||||
RecurrentNeuralNetwork activiation='linear' use_bias=False
|
||||
{'xs': [0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500], 'ys': [0.05, 0.0, 0.05, 0.0, 0.0, 0.1, 0.1, 0.05, 0.1, 0.0, 0.0]}
|
||||
|
||||
|
BIN
code/results/exp-mixed-soup-_1552674483.9866457-0/all_data.dill
Normal file
BIN
code/results/exp-mixed-soup-_1552674483.9866457-0/all_names.dill
Normal file
@ -0,0 +1,8 @@
|
||||
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
|
||||
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0], 'zs': [0.0, 0.0, 0.7, 1.9, 3.6, 4.3, 6.0, 6.1, 8.3, 7.7, 8.8]}
|
||||
|
||||
|
||||
TrainingNeuralNetworkDecorator activiation='linear' use_bias=False
|
||||
{'xs': [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 'ys': [0.8, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3], 'zs': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}
|
||||
|
||||
|
@ -0,0 +1,12 @@
|
||||
WeightwiseNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 50, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
AggregatingNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 50}
|
||||
|
||||
|
||||
RecurrentNeuralNetwork activiation='linear' use_bias=False
|
||||
{'divergent': 38, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 12}
|
||||
|
||||
|
BIN
code/results/known_fixpoint_variation_box.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
code/results/learn_severity.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
code/results/mixed_self_fixpoints.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
code/results/mixed_soup.png
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
code/results/newplot (1).png
Normal file
After Width: | Height: | Size: 234 KiB |
BIN
code/results/newplot(2).png
Normal file
After Width: | Height: | Size: 259 KiB |
@ -0,0 +1 @@
|
||||
{'divergent': 0, 'fix_zero': 10, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
BIN
code/results/self_apply1.png
Normal file
After Width: | Height: | Size: 224 KiB |
BIN
code/results/self_apply2.png
Normal file
After Width: | Height: | Size: 137 KiB |
BIN
code/results/self_train1.png
Normal file
After Width: | Height: | Size: 187 KiB |
BIN
code/results/self_train2.png
Normal file
After Width: | Height: | Size: 155 KiB |
BIN
code/results/self_training_weightwise_network/experiment.dill
Normal file
BIN
code/results/self_training_weightwise_network/trajectorys.dill
Normal file
BIN
code/results/soup1.png
Normal file
After Width: | Height: | Size: 266 KiB |
BIN
code/results/soup2.png
Normal file
After Width: | Height: | Size: 226 KiB |
BIN
code/results/training_fixpoints.png
Normal file
After Width: | Height: | Size: 17 KiB |
@ -28,7 +28,8 @@ def generate_fixpoint_weights():
|
||||
def generate_fixpoint_net():
|
||||
#NOTE: Weightwise only is all we can do right now IMO
|
||||
net = WeightwiseNeuralNetwork(width=2, depth=2).with_keras_params(activation='sigmoid')
|
||||
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='sigmoid') # I don't know if this work for aggregaeting. We don't actually need it, though.
|
||||
# I don't know if this work for aggregaeting. We don't actually need it, though.
|
||||
# net = AggregatingNeuralNetwork(aggregates=4, width=2, depth=2).with_keras_params(activation='sigmoid')
|
||||
net.set_weights(generate_fixpoint_weights())
|
||||
return net
|
||||
|
||||
|