Refactor:
Step 1 - Introduction of Weight object for global weight operations Step2 - Cleanup Step 3 - Redone WEightwise network updates in clean numpy code
This commit is contained in:
@@ -4,7 +4,6 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
|
||||
@@ -3,16 +3,18 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
|
||||
def count(counters, net, notable_nets=None):
|
||||
notable_nets = notable_nets or []
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
@@ -52,7 +54,7 @@ if __name__ == '__main__':
|
||||
net = ParticleDecorator(net)
|
||||
name = str(net.__class__.__name__) + " activiation='" + str(net.get_keras_params().get('activation')) + "' use_bias='" + str(net.get_keras_params().get('use_bias')) + "'"
|
||||
count(counters, net, notable_nets)
|
||||
keras.backend.clear_session()
|
||||
K.clear_session()
|
||||
all_counters += [counters]
|
||||
# all_notable_nets += [notable_nets]
|
||||
all_names += [name]
|
||||
|
||||
@@ -5,12 +5,11 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import prng
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
from statistics import mean
|
||||
@@ -85,7 +84,7 @@ if __name__ == '__main__':
|
||||
exp.ys += [time_to_something]
|
||||
# time steps still regarded as sthe initial fix-point
|
||||
exp.zs += [time_as_fixpoint]
|
||||
keras.backend.clear_session()
|
||||
K.backend.clear_session()
|
||||
current_scale /= 10.0
|
||||
for d in range(exp.depth):
|
||||
exp.log('variation 10e-' + str(d))
|
||||
|
||||
@@ -6,13 +6,12 @@ sys.path += os.path.join('..', '.')
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import *
|
||||
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
from statistics import mean
|
||||
avg = mean
|
||||
@@ -28,7 +27,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, soup, notable_nets=[]):
|
||||
def count(counters, soup, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@@ -40,6 +39,7 @@ def count(counters, soup, notable_nets=[]):
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
for net in soup.particles:
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
|
||||
@@ -6,11 +6,10 @@ from typing import Tuple
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
@@ -23,7 +22,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
def count(counters, net, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@@ -34,7 +33,7 @@ def count(counters, net, notable_nets=[]):
|
||||
:rtype Tuple[dict, list]
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
|
||||
@@ -6,12 +6,11 @@ sys.path += os.path.join('..', '.')
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
from soup import *
|
||||
|
||||
import keras.backend
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
|
||||
def generate_counters():
|
||||
@@ -24,7 +23,7 @@ def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
|
||||
def count(counters, soup, notable_nets=[]):
|
||||
def count(counters, soup, notable_nets=None):
|
||||
"""
|
||||
Count the occurences ot the types of weight trajectories.
|
||||
|
||||
@@ -36,6 +35,7 @@ def count(counters, soup, notable_nets=[]):
|
||||
:return: Both the counter dictionary and the list of interessting nets.
|
||||
"""
|
||||
|
||||
notable_nets = notable_nets or list()
|
||||
for net in soup.particles:
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
|
||||
@@ -4,16 +4,16 @@ import os
|
||||
# Concat top Level dir to system environmental variables
|
||||
sys.path += os.path.join('..', '.')
|
||||
|
||||
from util import *
|
||||
from experiment import *
|
||||
from network import *
|
||||
|
||||
import keras.backend as K
|
||||
import tensorflow.python.keras.backend as K
|
||||
|
||||
def generate_counters():
|
||||
return {'divergent': 0, 'fix_zero': 0, 'fix_other': 0, 'fix_sec': 0, 'other': 0}
|
||||
|
||||
def count(counters, net, notable_nets=[]):
|
||||
def count(counters, net, notable_nets=None):
|
||||
notable_nets = notable_nets or list()
|
||||
if net.is_diverged():
|
||||
counters['divergent'] += 1
|
||||
elif net.is_fixpoint():
|
||||
|
||||
Reference in New Issue
Block a user