- rearanged experiments.py into single runable files
- Reformated net.self_x functions (sa, st) - corrected robustness_exp.py - NO DEBUGGING DONE!!!!!
This commit is contained in:
755
experiments.py
755
experiments.py
@ -1,755 +0,0 @@
|
||||
import copy
|
||||
import random
|
||||
import os.path
|
||||
import pickle
|
||||
from tokenize import String
|
||||
|
||||
from tqdm import tqdm
|
||||
from functionalities_test import test_for_fixpoints, is_zero_fixpoint, is_identity_function
|
||||
from network import Net
|
||||
from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints, box_plot, write_file
|
||||
from visualization import plot_3d_self_application, plot_3d_self_train
|
||||
|
||||
|
||||
class SelfTrainExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, directory_name) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.epochs = epochs
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating ST experiment %s" % i)
|
||||
|
||||
net_name = f"ST_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.epochs):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
self.nets.append(net)
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
exp_details = f"Self-train for {self.epochs} epochs"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
|
||||
class SelfApplicationExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, application_steps, train_nets, directory_name, training_steps
|
||||
) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.SA_steps = application_steps #
|
||||
|
||||
self.train_nets = train_nets
|
||||
self.ST_steps = training_steps
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
""" Creating the nets & making the SA steps & (maybe) also training the networks. """
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating SA experiment %s" % i)
|
||||
|
||||
net_name = f"SA_net_{str(i)}"
|
||||
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name
|
||||
)
|
||||
for _ in range(self.SA_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
|
||||
if self.train_nets == "before_SA":
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
elif self.train_nets == "after_SA":
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
else:
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
|
||||
self.nets.append(net)
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"SA_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
plot_3d_self_application(self.nets, exp_name, self.directory_name, self.log_step_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
exp_details = f"{self.SA_steps} SA steps"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
class SoupExperiment:
|
||||
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance,
|
||||
train_nets, ST_steps, epochs, log_step_size, directory_name):
|
||||
super().__init__()
|
||||
self.population_size = population_size
|
||||
|
||||
self.net_input_size = net_i_size
|
||||
self.net_hidden_size = net_h_size
|
||||
self.net_out_size = net_o_size
|
||||
self.net_learning_rate = learning_rate
|
||||
self.attack_chance = attack_chance
|
||||
self.train_nets = train_nets
|
||||
# self.SA_steps = SA_steps
|
||||
self.ST_steps = ST_steps
|
||||
self.epochs = epochs
|
||||
self.log_step_size = log_step_size
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
# <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in %
|
||||
self.fixpoint_counters_history = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.population = []
|
||||
self.populate_environment()
|
||||
|
||||
self.evolve()
|
||||
self.fixpoint_percentage()
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in tqdm(range(self.population_size)):
|
||||
loop_population_size.set_description("Populating soup experiment %s" % i)
|
||||
|
||||
net_name = f"soup_network_{i}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
self.population.append(net)
|
||||
|
||||
def evolve(self):
|
||||
""" Evolving consists of attacking & self-training. """
|
||||
|
||||
loop_epochs = tqdm(range(self.epochs))
|
||||
for i in loop_epochs:
|
||||
loop_epochs.set_description("Evolving soup %s" % i)
|
||||
|
||||
# A network attacking another network with a given percentage
|
||||
chance = random.randint(1, 100)
|
||||
if chance <= self.attack_chance:
|
||||
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
||||
random_net1 = self.population[random_net1]
|
||||
random_net2 = self.population[random_net2]
|
||||
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
|
||||
random_net1.attack(random_net2)
|
||||
|
||||
# Self-training each network in the population
|
||||
for j in range(self.population_size):
|
||||
net = self.population[j]
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
|
||||
# Testing for fixpoints after each batch of ST steps to see relevant data
|
||||
if i % self.ST_steps == 0:
|
||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters["fix_weak"] +
|
||||
self.fixpoint_counters["fix_sec"]) / self.population_size, 1)
|
||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||
|
||||
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
||||
if i < self.epochs:
|
||||
self.reset_fixpoint_counters()
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs"
|
||||
return plot_3d_soup(self.population, exp_name, self.directory_name)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||
exp_details = f"Evolution steps: {self.epochs} epochs"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def fixpoint_percentage(self):
|
||||
runs = self.epochs / self.ST_steps
|
||||
SA_steps = None
|
||||
line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory_name,
|
||||
self.population_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.population)):
|
||||
net_loss_history = self.population[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
def reset_fixpoint_counters(self):
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
|
||||
class MixedSettingExperiment:
|
||||
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, train_nets,
|
||||
epochs, SA_steps, ST_steps_between_SA, log_step_size, directory_name):
|
||||
super().__init__()
|
||||
self.population_size = population_size
|
||||
|
||||
self.net_input_size = net_i_size
|
||||
self.net_hidden_size = net_h_size
|
||||
self.net_out_size = net_o_size
|
||||
self.net_learning_rate = learning_rate
|
||||
self.train_nets = train_nets
|
||||
self.epochs = epochs
|
||||
self.SA_steps = SA_steps
|
||||
self.ST_steps_between_SA = ST_steps_between_SA
|
||||
self.log_step_size = log_step_size
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters_history = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
self.populate_environment()
|
||||
|
||||
self.fixpoint_percentage()
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating mixed experiment %s" % i)
|
||||
|
||||
net_name = f"mixed_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
self.nets.append(net)
|
||||
|
||||
loop_epochs = tqdm(range(self.epochs))
|
||||
for j in loop_epochs:
|
||||
loop_epochs.set_description("Running mixed experiment %s" % j)
|
||||
|
||||
for i in loop_population_size:
|
||||
net = self.nets[i]
|
||||
|
||||
if self.train_nets == "before_SA":
|
||||
for _ in range(self.ST_steps_between_SA):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
input_data = net.input_weight_matrix()
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
|
||||
elif self.train_nets == "after_SA":
|
||||
input_data = net.input_weight_matrix()
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
for _ in range(self.ST_steps_between_SA):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
print(f"\nLast weight matrix (epoch: {j}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
# Rounding the result not to run into other problems later regarding the exact representation of floating number
|
||||
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters[
|
||||
"fix_sec"]) / self.population_size, 1)
|
||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||
|
||||
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
||||
if j < self.epochs:
|
||||
self.reset_fixpoint_counters()
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"Mixed {str(len(self.nets))}"
|
||||
|
||||
# This batch size is not relevant for mixed settings because during an epoch there are more steps of SA & ST happening
|
||||
# and only they need the batch size. To not affect the number of epochs shown in the 3D plot, will send
|
||||
# forward the number "1" for batch size with the variable <irrelevant_batch_size>
|
||||
irrelevant_batch_size = 1
|
||||
plot_3d_self_train(self.nets, exp_name, self.directory_name, irrelevant_batch_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"SA steps: {self.SA_steps}; ST steps: {self.ST_steps_between_SA}"
|
||||
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def fixpoint_percentage(self):
|
||||
line_chart_fixpoints(self.fixpoint_counters_history, self.epochs, self.ST_steps_between_SA,
|
||||
self.SA_steps, self.directory_name, self.population_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
def reset_fixpoint_counters(self):
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
|
||||
class RobustnessExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
ST_steps, directory_name) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
|
||||
self.ST_steps = ST_steps
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
self.id_functions = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
print("Nets:\n", self.nets)
|
||||
|
||||
self.count_fixpoints()
|
||||
[print(net.is_fixpoint) for net in self.nets]
|
||||
self.test_robustness()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating robustness experiment %s" % i)
|
||||
|
||||
net_name = f"net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
self.nets.append(net)
|
||||
|
||||
def test_robustness(self):
|
||||
#test_for_fixpoints(self.fixpoint_counters, self.nets, self.id_functions)
|
||||
|
||||
zero_epsilon = pow(10, -5)
|
||||
data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
|
||||
|
||||
for i in range(len(self.id_functions)):
|
||||
for j in range(10):
|
||||
original_net = self.id_functions[i]
|
||||
|
||||
# Creating a clone of the network. Not by copying it, but by creating a completely new network
|
||||
# and changing its weights to the original ones.
|
||||
original_net_clone = Net(original_net.input_size, original_net.hidden_size, original_net.out_size,
|
||||
original_net.name)
|
||||
# Extra safety for the value of the weights
|
||||
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
|
||||
|
||||
input_data = original_net_clone.input_weight_matrix()
|
||||
target_data = original_net_clone.create_target_weights(input_data)
|
||||
|
||||
changed_weights = copy.deepcopy(input_data)
|
||||
for k in range(len(input_data)):
|
||||
changed_weights[k][0] = changed_weights[k][0] + pow(10, -j)
|
||||
|
||||
# Testing if the new net is still an identity function after applying noise
|
||||
still_id_func = is_identity_function(original_net_clone, changed_weights, target_data, zero_epsilon)
|
||||
|
||||
# If the net is still an id. func. after applying the first run of noise, continue to apply it until otherwise
|
||||
while still_id_func and data[i][j] <= 1000:
|
||||
data[i][j] += 1
|
||||
|
||||
input_data = original_net_clone.input_weight_matrix()
|
||||
original_net_clone = original_net_clone.self_application(input_data, 1, self.log_step_size)
|
||||
|
||||
#new_weights = original_net_clone.create_target_weights(changed_weights)
|
||||
#original_net_clone = original_net_clone.apply_weights(original_net_clone, new_weights)
|
||||
|
||||
still_id_func = is_identity_function(original_net_clone, input_data, target_data, zero_epsilon)
|
||||
|
||||
print(f"Data {data}")
|
||||
|
||||
if data.count(0) == 10:
|
||||
print(f"There is no network resisting the robustness test.")
|
||||
text = f"For this population of \n {self.population_size} networks \n there is no" \
|
||||
f" network resisting the robustness test."
|
||||
write_file(text, self.directory_name)
|
||||
else:
|
||||
box_plot(data, self.directory_name, self.population_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"ST steps: {self.ST_steps}"
|
||||
|
||||
self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
""" ----------------------------------------------- Running the experiments ----------------------------------------------- """
|
||||
|
||||
|
||||
def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, runs, run_name, name_hash):
|
||||
experiments = {}
|
||||
|
||||
check_folder("self_training")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
ST_directory_name = f"experiments/self_training/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
ST_experiment = SelfTrainExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
epochs,
|
||||
ST_directory_name
|
||||
)
|
||||
pickle.dump(ST_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = ST_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/self_training/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "ST"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
|
||||
def run_SA_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, runs, run_name, name_hash, application_steps, train_nets, training_steps):
|
||||
experiments = {}
|
||||
|
||||
check_folder("self_application")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/self_application/{run_name}_run_{i}_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
||||
|
||||
SA_experiment = SelfApplicationExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
application_steps,
|
||||
train_nets,
|
||||
directory_name,
|
||||
training_steps
|
||||
)
|
||||
pickle.dump(SA_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = SA_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/self_application/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "SA"
|
||||
summary_fixpoint_experiment(runs, population_size, application_steps, experiments, net_learning_rate,
|
||||
directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
|
||||
def run_soup_experiment(population_size, attack_chance, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, epochs, batch_size, runs, run_name, name_hash, ST_steps, train_nets):
|
||||
experiments = {}
|
||||
fixpoints_percentages = []
|
||||
|
||||
check_folder("soup")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/soup/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
soup_experiment = SoupExperiment(
|
||||
population_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
attack_chance,
|
||||
train_nets,
|
||||
ST_steps,
|
||||
epochs,
|
||||
batch_size,
|
||||
directory_name
|
||||
)
|
||||
pickle.dump(soup_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = soup_experiment
|
||||
|
||||
# Building history of fixpoint percentages for summary
|
||||
fixpoint_counters_history = soup_experiment.fixpoint_counters_history
|
||||
if not fixpoints_percentages:
|
||||
fixpoints_percentages = soup_experiment.fixpoint_counters_history
|
||||
else:
|
||||
# Using list comprehension to make the sum of all the percentages
|
||||
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
|
||||
range(len(fixpoints_percentages))]
|
||||
|
||||
# Creating a folder for the summary of the current runs
|
||||
directory_name = f"experiments/soup/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
# Building a summary of all the runs
|
||||
summary_pre_title = "soup"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
SA_steps = None
|
||||
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
|
||||
population_size)
|
||||
|
||||
|
||||
def run_mixed_experiment(population_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, train_nets,
|
||||
epochs, SA_steps, ST_steps_between_SA, batch_size, name_hash, runs, run_name):
|
||||
experiments = {}
|
||||
fixpoints_percentages = []
|
||||
|
||||
check_folder("mixed")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/mixed/{run_name}_run_{i}_{str(population_size)}_nets_{SA_steps}_SA_{ST_steps_between_SA}_ST_{str(name_hash)}"
|
||||
|
||||
mixed_experiment = MixedSettingExperiment(
|
||||
population_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
train_nets,
|
||||
epochs,
|
||||
SA_steps,
|
||||
ST_steps_between_SA,
|
||||
batch_size,
|
||||
directory_name
|
||||
)
|
||||
pickle.dump(mixed_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = mixed_experiment
|
||||
|
||||
# Building history of fixpoint percentages for summary
|
||||
fixpoint_counters_history = mixed_experiment.fixpoint_counters_history
|
||||
if not fixpoints_percentages:
|
||||
fixpoints_percentages = mixed_experiment.fixpoint_counters_history
|
||||
else:
|
||||
# Using list comprehension to make the sum of all the percentages
|
||||
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
|
||||
range(len(fixpoints_percentages))]
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/mixed/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "mixed"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps_between_SA, SA_steps, directory_name,
|
||||
population_size)
|
||||
|
||||
|
||||
def run_robustness_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, epochs, runs, run_name, name_hash):
|
||||
experiments = {}
|
||||
|
||||
check_folder("robustness")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
ST_directory_name = f"experiments/robustness/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
robustness_experiment = RobustnessExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
epochs,
|
||||
ST_directory_name
|
||||
)
|
||||
pickle.dump(robustness_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = robustness_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/robustness/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "robustness"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
|
||||
""" ----------------------------------------- Methods for summarizing the experiments ------------------------------------------ """
|
||||
|
||||
|
||||
def summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title):
|
||||
avg_fixpoint_counters = {
|
||||
"avg_identity_func": 0,
|
||||
"avg_divergent": 0,
|
||||
"avg_fix_zero": 0,
|
||||
"avg_fix_weak": 0,
|
||||
"avg_fix_sec": 0,
|
||||
"avg_other_func": 0
|
||||
}
|
||||
|
||||
for i in range(len(experiments)):
|
||||
fixpoint_counters = experiments[i].fixpoint_counters
|
||||
|
||||
avg_fixpoint_counters["avg_identity_func"] += fixpoint_counters["identity_func"]
|
||||
avg_fixpoint_counters["avg_divergent"] += fixpoint_counters["divergent"]
|
||||
avg_fixpoint_counters["avg_fix_zero"] += fixpoint_counters["fix_zero"]
|
||||
avg_fixpoint_counters["avg_fix_weak"] += fixpoint_counters["fix_weak"]
|
||||
avg_fixpoint_counters["avg_fix_sec"] += fixpoint_counters["fix_sec"]
|
||||
avg_fixpoint_counters["avg_other_func"] += fixpoint_counters["other_func"]
|
||||
|
||||
# Calculating the average for each fixpoint
|
||||
avg_fixpoint_counters.update((x, y / len(experiments)) for x, y in avg_fixpoint_counters.items())
|
||||
|
||||
# Checking where the data is coming from to have a relevant title in the plot.
|
||||
if summary_pre_title not in ["ST", "SA", "soup", "mixed", "robustness"]:
|
||||
summary_pre_title = ""
|
||||
|
||||
# Plotting the summary
|
||||
source_checker = "summary"
|
||||
exp_details = f"{summary_pre_title}: {runs} runs & {epochs} epochs each."
|
||||
bar_chart_fixpoints(avg_fixpoint_counters, population_size, directory_name, net_learning_rate, exp_details,
|
||||
source_checker)
|
||||
|
||||
|
||||
def summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
|
||||
population_size):
|
||||
fixpoints_percentages = [round(fixpoints_percentages[i] / runs, 1) for i in range(len(fixpoints_percentages))]
|
||||
|
||||
# Plotting summary
|
||||
if "soup" in directory_name:
|
||||
line_chart_fixpoints(fixpoints_percentages, epochs / ST_steps, ST_steps, SA_steps, directory_name,
|
||||
population_size)
|
||||
else:
|
||||
line_chart_fixpoints(fixpoints_percentages, epochs, ST_steps, SA_steps, directory_name, population_size)
|
||||
|
||||
|
||||
""" --------------------------------------------------- Miscellaneous ---------------------------------------------------------- """
|
||||
|
||||
|
||||
def check_folder(experiment_folder: String):
|
||||
if not os.path.isdir("experiments"): os.mkdir(f"experiments/")
|
||||
if not os.path.isdir(f"experiments/{experiment_folder}/"): os.mkdir(f"experiments/{experiment_folder}/")
|
0
experiments/__init__.py
Normal file
0
experiments/__init__.py
Normal file
59
experiments/helpers.py
Normal file
59
experiments/helpers.py
Normal file
@ -0,0 +1,59 @@
|
||||
""" ----------------------------------------- Methods for summarizing the experiments ------------------------------------------ """
|
||||
import os
|
||||
|
||||
from visualization import line_chart_fixpoints, bar_chart_fixpoints
|
||||
|
||||
|
||||
def summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title):
|
||||
avg_fixpoint_counters = {
|
||||
"avg_identity_func": 0,
|
||||
"avg_divergent": 0,
|
||||
"avg_fix_zero": 0,
|
||||
"avg_fix_weak": 0,
|
||||
"avg_fix_sec": 0,
|
||||
"avg_other_func": 0
|
||||
}
|
||||
|
||||
for i in range(len(experiments)):
|
||||
fixpoint_counters = experiments[i].fixpoint_counters
|
||||
|
||||
avg_fixpoint_counters["avg_identity_func"] += fixpoint_counters["identity_func"]
|
||||
avg_fixpoint_counters["avg_divergent"] += fixpoint_counters["divergent"]
|
||||
avg_fixpoint_counters["avg_fix_zero"] += fixpoint_counters["fix_zero"]
|
||||
avg_fixpoint_counters["avg_fix_weak"] += fixpoint_counters["fix_weak"]
|
||||
avg_fixpoint_counters["avg_fix_sec"] += fixpoint_counters["fix_sec"]
|
||||
avg_fixpoint_counters["avg_other_func"] += fixpoint_counters["other_func"]
|
||||
|
||||
# Calculating the average for each fixpoint
|
||||
avg_fixpoint_counters.update((x, y / len(experiments)) for x, y in avg_fixpoint_counters.items())
|
||||
|
||||
# Checking where the data is coming from to have a relevant title in the plot.
|
||||
if summary_pre_title not in ["ST", "SA", "soup", "mixed", "robustness"]:
|
||||
summary_pre_title = ""
|
||||
|
||||
# Plotting the summary
|
||||
source_checker = "summary"
|
||||
exp_details = f"{summary_pre_title}: {runs} runs & {epochs} epochs each."
|
||||
bar_chart_fixpoints(avg_fixpoint_counters, population_size, directory_name, net_learning_rate, exp_details,
|
||||
source_checker)
|
||||
|
||||
|
||||
def summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
|
||||
population_size):
|
||||
fixpoints_percentages = [round(fixpoints_percentages[i] / runs, 1) for i in range(len(fixpoints_percentages))]
|
||||
|
||||
# Plotting summary
|
||||
if "soup" in directory_name:
|
||||
line_chart_fixpoints(fixpoints_percentages, epochs / ST_steps, ST_steps, SA_steps, directory_name,
|
||||
population_size)
|
||||
else:
|
||||
line_chart_fixpoints(fixpoints_percentages, epochs, ST_steps, SA_steps, directory_name, population_size)
|
||||
|
||||
|
||||
""" --------------------------------------------------- Miscellaneous ---------------------------------------------------------- """
|
||||
|
||||
|
||||
def check_folder(experiment_folder: str):
|
||||
if not os.path.isdir("experiments"): os.mkdir(f"experiments/")
|
||||
if not os.path.isdir(f"experiments/{experiment_folder}/"): os.mkdir(f"experiments/{experiment_folder}/")
|
183
experiments/mixed_setting_exp.py
Normal file
183
experiments/mixed_setting_exp.py
Normal file
@ -0,0 +1,183 @@
|
||||
import os.path
|
||||
import pickle
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.helpers import check_folder, summary_fixpoint_experiment, summary_fixpoint_percentage
|
||||
from functionalities_test import test_for_fixpoints
|
||||
from network import Net
|
||||
from visualization import plot_loss, bar_chart_fixpoints, line_chart_fixpoints
|
||||
from visualization import plot_3d_self_train
|
||||
|
||||
|
||||
class MixedSettingExperiment:
|
||||
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, train_nets,
|
||||
epochs, SA_steps, ST_steps_between_SA, log_step_size, directory_name):
|
||||
super().__init__()
|
||||
self.population_size = population_size
|
||||
|
||||
self.net_input_size = net_i_size
|
||||
self.net_hidden_size = net_h_size
|
||||
self.net_out_size = net_o_size
|
||||
self.net_learning_rate = learning_rate
|
||||
self.train_nets = train_nets
|
||||
self.epochs = epochs
|
||||
self.SA_steps = SA_steps
|
||||
self.ST_steps_between_SA = ST_steps_between_SA
|
||||
self.log_step_size = log_step_size
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters_history = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
self.populate_environment()
|
||||
|
||||
self.fixpoint_percentage()
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating mixed experiment %s" % i)
|
||||
|
||||
net_name = f"mixed_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
self.nets.append(net)
|
||||
|
||||
loop_epochs = tqdm(range(self.epochs))
|
||||
for j in loop_epochs:
|
||||
loop_epochs.set_description("Running mixed experiment %s" % j)
|
||||
|
||||
for i in loop_population_size:
|
||||
net = self.nets[i]
|
||||
|
||||
if self.train_nets == "before_SA":
|
||||
for _ in range(self.ST_steps_between_SA):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
input_data = net.input_weight_matrix()
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
|
||||
elif self.train_nets == "after_SA":
|
||||
input_data = net.input_weight_matrix()
|
||||
net.self_application(input_data, self.SA_steps, self.log_step_size)
|
||||
for _ in range(self.ST_steps_between_SA):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate, input_data, target_data)
|
||||
|
||||
print(
|
||||
f"\nLast weight matrix (epoch: {j}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
# Rounding the result not to run into other problems later regarding the exact representation of floating number
|
||||
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters[
|
||||
"fix_sec"]) / self.population_size, 1)
|
||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||
|
||||
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
||||
if j < self.epochs:
|
||||
self.reset_fixpoint_counters()
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"Mixed {str(len(self.nets))}"
|
||||
|
||||
# This batch size is not relevant for mixed settings because during an epoch there are more steps of SA & ST happening
|
||||
# and only they need the batch size. To not affect the number of epochs shown in the 3D plot, will send
|
||||
# forward the number "1" for batch size with the variable <irrelevant_batch_size>
|
||||
irrelevant_batch_size = 1
|
||||
plot_3d_self_train(self.nets, exp_name, self.directory_name, irrelevant_batch_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"SA steps: {self.SA_steps}; ST steps: {self.ST_steps_between_SA}"
|
||||
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def fixpoint_percentage(self):
|
||||
line_chart_fixpoints(self.fixpoint_counters_history, self.epochs, self.ST_steps_between_SA,
|
||||
self.SA_steps, self.directory_name, self.population_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
def reset_fixpoint_counters(self):
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
|
||||
def run_mixed_experiment(population_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate, train_nets,
|
||||
epochs, SA_steps, ST_steps_between_SA, batch_size, name_hash, runs, run_name):
|
||||
experiments = {}
|
||||
fixpoints_percentages = []
|
||||
|
||||
check_folder("mixed")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/mixed/{run_name}_run_{i}_{str(population_size)}_nets_{SA_steps}_SA_{ST_steps_between_SA}_ST_{str(name_hash)}"
|
||||
|
||||
mixed_experiment = MixedSettingExperiment(
|
||||
population_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
train_nets,
|
||||
epochs,
|
||||
SA_steps,
|
||||
ST_steps_between_SA,
|
||||
batch_size,
|
||||
directory_name
|
||||
)
|
||||
pickle.dump(mixed_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = mixed_experiment
|
||||
|
||||
# Building history of fixpoint percentages for summary
|
||||
fixpoint_counters_history = mixed_experiment.fixpoint_counters_history
|
||||
if not fixpoints_percentages:
|
||||
fixpoints_percentages = mixed_experiment.fixpoint_counters_history
|
||||
else:
|
||||
# Using list comprehension to make the sum of all the percentages
|
||||
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
|
||||
range(len(fixpoints_percentages))]
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/mixed/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "mixed"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps_between_SA, SA_steps, directory_name,
|
||||
population_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError('Test this here!!!')
|
154
experiments/robustness_exp.py
Normal file
154
experiments/robustness_exp.py
Normal file
@ -0,0 +1,154 @@
|
||||
import copy
|
||||
import os.path
|
||||
import pickle
|
||||
import random
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.helpers import check_folder, summary_fixpoint_experiment
|
||||
from functionalities_test import test_for_fixpoints, is_identity_function
|
||||
from network import Net
|
||||
from visualization import bar_chart_fixpoints, box_plot, write_file
|
||||
|
||||
|
||||
def add_noise(input_data, epsilon = pow(10, -5)):
|
||||
|
||||
output = copy.deepcopy(input_data)
|
||||
for k in range(len(input_data)):
|
||||
output[k][0] += random.random() * epsilon
|
||||
|
||||
return output
|
||||
|
||||
|
||||
|
||||
class RobustnessExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
ST_steps, directory_name) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
|
||||
self.ST_steps = ST_steps
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
self.id_functions = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
print("Nets:\n", self.nets)
|
||||
|
||||
self.count_fixpoints()
|
||||
[print(net.is_fixpoint) for net in self.nets]
|
||||
self.test_robustness()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating robustness experiment %s" % i)
|
||||
|
||||
net_name = f"net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
self.nets.append(net)
|
||||
|
||||
def test_robustness(self):
|
||||
# test_for_fixpoints(self.fixpoint_counters, self.nets, self.id_functions)
|
||||
|
||||
zero_epsilon = pow(10, -5)
|
||||
data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
|
||||
|
||||
for i in range(len(self.id_functions)):
|
||||
for j in range(10):
|
||||
original_net = self.id_functions[i]
|
||||
|
||||
# Creating a clone of the network. Not by copying it, but by creating a completely new network
|
||||
# and changing its weights to the original ones.
|
||||
original_net_clone = Net(original_net.input_size, original_net.hidden_size, original_net.out_size,
|
||||
original_net.name)
|
||||
# Extra safety for the value of the weights
|
||||
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
|
||||
|
||||
noisy_weights = add_noise(original_net_clone.input_weight_matrix())
|
||||
original_net_clone.apply_weights(noisy_weights)
|
||||
|
||||
# Testing if the new net is still an identity function after applying noise
|
||||
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
|
||||
|
||||
# If the net is still an id. func. after applying the first run of noise, continue to apply it until otherwise
|
||||
while still_id_func and data[i][j] <= 1000:
|
||||
data[i][j] += 1
|
||||
|
||||
original_net_clone = original_net_clone.self_application(1, self.log_step_size)
|
||||
|
||||
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
|
||||
|
||||
print(f"Data {data}")
|
||||
|
||||
if data.count(0) == 10:
|
||||
print(f"There is no network resisting the robustness test.")
|
||||
text = f"For this population of \n {self.population_size} networks \n there is no" \
|
||||
f" network resisting the robustness test."
|
||||
write_file(text, self.directory_name)
|
||||
else:
|
||||
box_plot(data, self.directory_name, self.population_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
exp_details = f"ST steps: {self.ST_steps}"
|
||||
|
||||
self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
def run_robustness_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, epochs, runs, run_name, name_hash):
|
||||
experiments = {}
|
||||
|
||||
check_folder("robustness")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
ST_directory_name = f"experiments/robustness/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
robustness_experiment = RobustnessExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
epochs,
|
||||
ST_directory_name
|
||||
)
|
||||
pickle.dump(robustness_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = robustness_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/robustness/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "robustness"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError('Test this here!!!')
|
120
experiments/self_application_exp.py
Normal file
120
experiments/self_application_exp.py
Normal file
@ -0,0 +1,120 @@
|
||||
import os.path
|
||||
import pickle
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.helpers import check_folder, summary_fixpoint_experiment
|
||||
from functionalities_test import test_for_fixpoints
|
||||
from network import Net
|
||||
from visualization import bar_chart_fixpoints
|
||||
from visualization import plot_3d_self_application
|
||||
|
||||
|
||||
class SelfApplicationExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, application_steps, train_nets, directory_name, training_steps
|
||||
) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.SA_steps = application_steps #
|
||||
|
||||
self.train_nets = train_nets
|
||||
self.ST_steps = training_steps
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
""" Creating the nets & making the SA steps & (maybe) also training the networks. """
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating SA experiment %s" % i)
|
||||
|
||||
net_name = f"SA_net_{str(i)}"
|
||||
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name
|
||||
)
|
||||
for _ in range(self.SA_steps):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
|
||||
if self.train_nets == "before_SA":
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
net.self_application(self.SA_steps, self.log_step_size)
|
||||
elif self.train_nets == "after_SA":
|
||||
net.self_application(self.SA_steps, self.log_step_size)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
else:
|
||||
net.self_application(self.SA_steps, self.log_step_size)
|
||||
|
||||
self.nets.append(net)
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"SA_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
plot_3d_self_application(self.nets, exp_name, self.directory_name, self.log_step_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
exp_details = f"{self.SA_steps} SA steps"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
|
||||
def run_SA_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, runs, run_name, name_hash, application_steps, train_nets, training_steps):
|
||||
experiments = {}
|
||||
|
||||
check_folder("self_application")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/self_application/{run_name}_run_{i}_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
||||
|
||||
SA_experiment = SelfApplicationExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
application_steps,
|
||||
train_nets,
|
||||
directory_name,
|
||||
training_steps
|
||||
)
|
||||
pickle.dump(SA_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = SA_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/self_application/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{application_steps}_SA_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "SA"
|
||||
summary_fixpoint_experiment(runs, population_size, application_steps, experiments, net_learning_rate,
|
||||
directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError('Test this here!!!')
|
114
experiments/self_train_exp.py
Normal file
114
experiments/self_train_exp.py
Normal file
@ -0,0 +1,114 @@
|
||||
import os.path
|
||||
import pickle
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.helpers import check_folder, summary_fixpoint_experiment
|
||||
from functionalities_test import test_for_fixpoints
|
||||
from network import Net
|
||||
from visualization import plot_loss, bar_chart_fixpoints
|
||||
from visualization import plot_3d_self_train
|
||||
|
||||
|
||||
|
||||
class SelfTrainExperiment:
|
||||
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, directory_name) -> None:
|
||||
self.population_size = population_size
|
||||
self.log_step_size = log_step_size
|
||||
self.net_input_size = net_input_size
|
||||
self.net_hidden_size = net_hidden_size
|
||||
self.net_out_size = net_out_size
|
||||
|
||||
self.net_learning_rate = net_learning_rate
|
||||
self.epochs = epochs
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.nets = []
|
||||
# Create population:
|
||||
self.populate_environment()
|
||||
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in loop_population_size:
|
||||
loop_population_size.set_description("Populating ST experiment %s" % i)
|
||||
|
||||
net_name = f"ST_net_{str(i)}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
|
||||
for _ in range(self.epochs):
|
||||
input_data = net.input_weight_matrix()
|
||||
target_data = net.create_target_weights(input_data)
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
print(f"\nLast weight matrix (epoch: {self.epochs}):\n{net.input_weight_matrix()}\nLossHistory: {net.loss_history[-10:]}")
|
||||
self.nets.append(net)
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"ST_{str(len(self.nets))}_nets_3d_weights_PCA"
|
||||
return plot_3d_self_train(self.nets, exp_name, self.directory_name, self.log_step_size)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.nets)
|
||||
exp_details = f"Self-train for {self.epochs} epochs"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.nets)):
|
||||
net_loss_history = self.nets[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
|
||||
def run_ST_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
||||
epochs, runs, run_name, name_hash):
|
||||
experiments = {}
|
||||
|
||||
check_folder("self_training")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
ST_directory_name = f"experiments/self_training/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
ST_experiment = SelfTrainExperiment(
|
||||
population_size,
|
||||
batch_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
epochs,
|
||||
ST_directory_name
|
||||
)
|
||||
pickle.dump(ST_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = ST_experiment
|
||||
|
||||
# Building a summary of all the runs
|
||||
directory_name = f"experiments/self_training/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
summary_pre_title = "ST"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
|
||||
if __name__ == '__main__':
|
||||
raise NotImplementedError('Test this here!!!')
|
179
experiments/soup_exp.py
Normal file
179
experiments/soup_exp.py
Normal file
@ -0,0 +1,179 @@
|
||||
import random
|
||||
import os.path
|
||||
import pickle
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from experiments.helpers import check_folder, summary_fixpoint_percentage, summary_fixpoint_experiment
|
||||
from functionalities_test import test_for_fixpoints
|
||||
from network import Net
|
||||
from visualization import plot_loss, bar_chart_fixpoints, plot_3d_soup, line_chart_fixpoints
|
||||
|
||||
|
||||
class SoupExperiment:
|
||||
def __init__(self, population_size, net_i_size, net_h_size, net_o_size, learning_rate, attack_chance,
|
||||
train_nets, ST_steps, epochs, log_step_size, directory_name):
|
||||
super().__init__()
|
||||
self.population_size = population_size
|
||||
|
||||
self.net_input_size = net_i_size
|
||||
self.net_hidden_size = net_h_size
|
||||
self.net_out_size = net_o_size
|
||||
self.net_learning_rate = learning_rate
|
||||
self.attack_chance = attack_chance
|
||||
self.train_nets = train_nets
|
||||
# self.SA_steps = SA_steps
|
||||
self.ST_steps = ST_steps
|
||||
self.epochs = epochs
|
||||
self.log_step_size = log_step_size
|
||||
|
||||
self.loss_history = []
|
||||
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
# <self.fixpoint_counters_history> is used for keeping track of the amount of fixpoints in %
|
||||
self.fixpoint_counters_history = []
|
||||
|
||||
self.directory_name = directory_name
|
||||
os.mkdir(self.directory_name)
|
||||
|
||||
self.population = []
|
||||
self.populate_environment()
|
||||
|
||||
self.evolve()
|
||||
self.fixpoint_percentage()
|
||||
self.weights_evolution_3d_experiment()
|
||||
self.count_fixpoints()
|
||||
self.visualize_loss()
|
||||
|
||||
def populate_environment(self):
|
||||
loop_population_size = tqdm(range(self.population_size))
|
||||
for i in tqdm(range(self.population_size)):
|
||||
loop_population_size.set_description("Populating soup experiment %s" % i)
|
||||
|
||||
net_name = f"soup_network_{i}"
|
||||
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
||||
self.population.append(net)
|
||||
|
||||
def evolve(self):
|
||||
""" Evolving consists of attacking & self-training. """
|
||||
|
||||
loop_epochs = tqdm(range(self.epochs))
|
||||
for i in loop_epochs:
|
||||
loop_epochs.set_description("Evolving soup %s" % i)
|
||||
|
||||
# A network attacking another network with a given percentage
|
||||
chance = random.randint(1, 100)
|
||||
if chance <= self.attack_chance:
|
||||
random_net1, random_net2 = random.sample(range(self.population_size), 2)
|
||||
random_net1 = self.population[random_net1]
|
||||
random_net2 = self.population[random_net2]
|
||||
print(f"\n Attack: {random_net1.name} -> {random_net2.name}")
|
||||
random_net1.attack(random_net2)
|
||||
|
||||
# Self-training each network in the population
|
||||
for j in range(self.population_size):
|
||||
net = self.population[j]
|
||||
|
||||
for _ in range(self.ST_steps):
|
||||
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
||||
|
||||
# Testing for fixpoints after each batch of ST steps to see relevant data
|
||||
if i % self.ST_steps == 0:
|
||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||
fixpoints_percentage = round((self.fixpoint_counters["fix_zero"] + self.fixpoint_counters["fix_weak"] +
|
||||
self.fixpoint_counters["fix_sec"]) / self.population_size, 1)
|
||||
self.fixpoint_counters_history.append(fixpoints_percentage)
|
||||
|
||||
# Resetting the fixpoint counter. Last iteration not to be reset - it is important for the bar_chart_fixpoints().
|
||||
if i < self.epochs:
|
||||
self.reset_fixpoint_counters()
|
||||
|
||||
def weights_evolution_3d_experiment(self):
|
||||
exp_name = f"soup_{self.population_size}_nets_{self.ST_steps}_training_{self.epochs}_epochs"
|
||||
return plot_3d_soup(self.population, exp_name, self.directory_name)
|
||||
|
||||
def count_fixpoints(self):
|
||||
test_for_fixpoints(self.fixpoint_counters, self.population)
|
||||
exp_details = f"Evolution steps: {self.epochs} epochs"
|
||||
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
||||
exp_details)
|
||||
|
||||
def fixpoint_percentage(self):
|
||||
runs = self.epochs / self.ST_steps
|
||||
SA_steps = None
|
||||
line_chart_fixpoints(self.fixpoint_counters_history, runs, self.ST_steps, SA_steps, self.directory_name,
|
||||
self.population_size)
|
||||
|
||||
def visualize_loss(self):
|
||||
for i in range(len(self.population)):
|
||||
net_loss_history = self.population[i].loss_history
|
||||
self.loss_history.append(net_loss_history)
|
||||
|
||||
plot_loss(self.loss_history, self.directory_name)
|
||||
|
||||
def reset_fixpoint_counters(self):
|
||||
self.fixpoint_counters = {
|
||||
"identity_func": 0,
|
||||
"divergent": 0,
|
||||
"fix_zero": 0,
|
||||
"fix_weak": 0,
|
||||
"fix_sec": 0,
|
||||
"other_func": 0
|
||||
}
|
||||
|
||||
|
||||
def run_soup_experiment(population_size, attack_chance, net_input_size, net_hidden_size, net_out_size,
|
||||
net_learning_rate, epochs, batch_size, runs, run_name, name_hash, ST_steps, train_nets):
|
||||
experiments = {}
|
||||
fixpoints_percentages = []
|
||||
|
||||
check_folder("soup")
|
||||
|
||||
# Running the experiments
|
||||
for i in range(runs):
|
||||
directory_name = f"experiments/soup/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
|
||||
soup_experiment = SoupExperiment(
|
||||
population_size,
|
||||
net_input_size,
|
||||
net_hidden_size,
|
||||
net_out_size,
|
||||
net_learning_rate,
|
||||
attack_chance,
|
||||
train_nets,
|
||||
ST_steps,
|
||||
epochs,
|
||||
batch_size,
|
||||
directory_name
|
||||
)
|
||||
pickle.dump(soup_experiment, open(f"{directory_name}/full_experiment_pickle.p", "wb"))
|
||||
experiments[i] = soup_experiment
|
||||
|
||||
# Building history of fixpoint percentages for summary
|
||||
fixpoint_counters_history = soup_experiment.fixpoint_counters_history
|
||||
if not fixpoints_percentages:
|
||||
fixpoints_percentages = soup_experiment.fixpoint_counters_history
|
||||
else:
|
||||
# Using list comprehension to make the sum of all the percentages
|
||||
fixpoints_percentages = [fixpoints_percentages[i] + fixpoint_counters_history[i] for i in
|
||||
range(len(fixpoints_percentages))]
|
||||
|
||||
# Creating a folder for the summary of the current runs
|
||||
directory_name = f"experiments/soup/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
||||
os.mkdir(directory_name)
|
||||
|
||||
# Building a summary of all the runs
|
||||
summary_pre_title = "soup"
|
||||
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
||||
summary_pre_title)
|
||||
SA_steps = None
|
||||
summary_fixpoint_percentage(runs, epochs, fixpoints_percentages, ST_steps, SA_steps, directory_name,
|
||||
population_size)
|
||||
|
@ -27,7 +27,10 @@ def is_divergent(network: Net) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def is_identity_function(network: Net, input_data: Tensor, target_data: Tensor, epsilon=pow(10, -5)) -> bool:
|
||||
def is_identity_function(network: Net, epsilon=pow(10, -5)) -> bool:
|
||||
|
||||
input_data = network.input_weight_matrix()
|
||||
target_data = network.create_target_weights(input_data)
|
||||
predicted_values = network(input_data)
|
||||
|
||||
return np.allclose(target_data.detach().numpy(), predicted_values.detach().numpy(), 0, epsilon)
|
||||
@ -48,7 +51,7 @@ def is_secondary_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> b
|
||||
|
||||
# Getting the second output by initializing a new net with the weights of the original net.
|
||||
net_copy = copy.deepcopy(network)
|
||||
net_copy.apply_weights(net_copy, first_output)
|
||||
net_copy.apply_weights(first_output)
|
||||
input_data_2 = net_copy.input_weight_matrix()
|
||||
|
||||
# Calculating second output
|
||||
@ -69,7 +72,8 @@ def is_weak_fixpoint(network: Net, input_data: Tensor, epsilon: float) -> bool:
|
||||
return result
|
||||
|
||||
|
||||
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=[]):
|
||||
def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=None):
|
||||
id_functions = id_functions or None
|
||||
zero_epsilon = pow(10, -5)
|
||||
epsilon = pow(10, -3)
|
||||
|
||||
@ -81,7 +85,7 @@ def test_for_fixpoints(fixpoint_counter: Dict, nets: List, id_functions=[]):
|
||||
if is_divergent(nets[i]):
|
||||
fixpoint_counter["divergent"] += 1
|
||||
nets[i].is_fixpoint = "divergent"
|
||||
elif is_identity_function(nets[i], input_data, target_data, zero_epsilon):
|
||||
elif is_identity_function(nets[i], zero_epsilon):
|
||||
fixpoint_counter["identity_func"] += 1
|
||||
nets[i].is_fixpoint = "identity_func"
|
||||
id_functions.append(nets[i])
|
||||
|
57
network.py
57
network.py
@ -1,5 +1,7 @@
|
||||
#from __future__ import annotations
|
||||
import copy
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
@ -32,22 +34,16 @@ class Net(nn.Module):
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def apply_weights(network, new_weights: Tensor):
|
||||
def apply_weights(self, new_weights: Tensor):
|
||||
""" Changing the weights of a network to new given values. """
|
||||
|
||||
i = 0
|
||||
|
||||
for layer_id, layer_name in enumerate(network.state_dict()):
|
||||
for line_id, line_values in enumerate(network.state_dict()[layer_name]):
|
||||
for weight_id, weight_value in enumerate(network.state_dict()[layer_name][line_id]):
|
||||
network.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
|
||||
for layer_id, layer_name in enumerate(self.state_dict()):
|
||||
for line_id, line_values in enumerate(self.state_dict()[layer_name]):
|
||||
for weight_id, weight_value in enumerate(self.state_dict()[layer_name][line_id]):
|
||||
self.state_dict()[layer_name][line_id][weight_id] = new_weights[i]
|
||||
i += 1
|
||||
|
||||
return network
|
||||
|
||||
|
||||
|
||||
return self
|
||||
|
||||
def __init__(self, i_size: int, h_size: int, o_size: int, name=None, start_time=1) -> None:
|
||||
super().__init__()
|
||||
@ -105,7 +101,7 @@ class Net(nn.Module):
|
||||
|
||||
return torch.from_numpy(weight_matrix)
|
||||
|
||||
def self_train(self, training_steps: int, log_step_size: int, learning_rate: float, input_data: Tensor, target_data: Tensor) -> (np.ndarray, Tensor, list):
|
||||
def self_train(self, training_steps: int, log_step_size: int, learning_rate: float) -> (np.ndarray, Tensor, list):
|
||||
""" Training a network to predict its own weights in order to self-replicate. """
|
||||
|
||||
optimizer = optim.SGD(self.parameters(), lr=learning_rate, momentum=0.9)
|
||||
@ -114,6 +110,8 @@ class Net(nn.Module):
|
||||
for training_step in range(training_steps):
|
||||
self.number_trained += 1
|
||||
optimizer.zero_grad()
|
||||
input_data = self.input_weight_matrix()
|
||||
target_data = self.create_target_weights(input_data)
|
||||
output = self(input_data)
|
||||
loss = F.mse_loss(output, target_data)
|
||||
loss.backward()
|
||||
@ -122,31 +120,29 @@ class Net(nn.Module):
|
||||
# Saving the history of the weights after a certain amount of steps (aka log_step_size) for research.
|
||||
# If it is a soup/mixed env. save weights only at the end of all training steps (aka a soup/mixed epoch)
|
||||
if "soup" not in self.name and "mixed" not in self.name:
|
||||
weights = self.create_target_weights(self.input_weight_matrix())
|
||||
# If self-training steps are lower than 10, then append weight history after each ST step.
|
||||
if self.number_trained < 10:
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.s_train_weights_history.append(weights.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
else:
|
||||
if self.number_trained % log_step_size == 0:
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.s_train_weights_history.append(weights.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
|
||||
weights = self.create_target_weights(self.input_weight_matrix())
|
||||
# Saving weights only at the end of a soup/mixed exp. epoch.
|
||||
if "soup" in self.name or "mixed" in self.name:
|
||||
self.s_train_weights_history.append(target_data.T.detach().numpy())
|
||||
self.s_train_weights_history.append(weights.T.detach().numpy())
|
||||
self.loss_history.append(loss.detach().numpy().item())
|
||||
|
||||
return output.detach().numpy(), loss, self.loss_history
|
||||
return weights.detach().numpy(), loss, self.loss_history
|
||||
|
||||
def self_application(self, weights_matrix: Tensor, SA_steps: int, log_step_size: int) :
|
||||
def self_application(self, SA_steps: int, log_step_size: Union[int, None] = None):
|
||||
""" Inputting the weights of a network to itself for a number of steps, without backpropagation. """
|
||||
|
||||
data = copy.deepcopy(weights_matrix)
|
||||
new_net = copy.deepcopy(self)
|
||||
# output = new_net(data)
|
||||
|
||||
for i in range(SA_steps):
|
||||
output = new_net(data)
|
||||
output = self(self.input_weight_matrix())
|
||||
|
||||
# Saving the weights history after a certain amount of steps (aka log_step_size) for research purposes.
|
||||
# If self-application steps are lower than 10, then append weight history after each SA step.
|
||||
@ -159,17 +155,14 @@ class Net(nn.Module):
|
||||
""" See after how many steps of SA is the output not changing anymore: """
|
||||
# print(f"Self-app. step {i+1}: {Experiment.changing_rate(output2, output)}")
|
||||
|
||||
for j in range(len(data)):
|
||||
""" Constructing the weight matrix to have it as the next input. """
|
||||
data[j][0] = output[j]
|
||||
self = self.apply_weights(output)
|
||||
|
||||
new_net = self.apply_weights(new_net, output)
|
||||
|
||||
return new_net
|
||||
return self
|
||||
|
||||
def attack(self, other_net):
|
||||
other_net_weights = other_net.input_weight_matrix()
|
||||
SA_steps = 1
|
||||
log_step_size = 1
|
||||
my_evaluation = self(other_net_weights)
|
||||
|
||||
return self.self_application(other_net_weights, SA_steps, log_step_size)
|
||||
SA_steps = 1
|
||||
|
||||
return other_net.apply_weights(my_evaluation)
|
||||
|
Reference in New Issue
Block a user