
- Reformated net.self_x functions (sa, st) - corrected robustness_exp.py - NO DEBUGGING DONE!!!!!
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
import copy
|
|
import os.path
|
|
import pickle
|
|
import random
|
|
|
|
from tqdm import tqdm
|
|
|
|
from experiments.helpers import check_folder, summary_fixpoint_experiment
|
|
from functionalities_test import test_for_fixpoints, is_identity_function
|
|
from network import Net
|
|
from visualization import bar_chart_fixpoints, box_plot, write_file
|
|
|
|
|
|
def add_noise(input_data, epsilon = pow(10, -5)):
|
|
|
|
output = copy.deepcopy(input_data)
|
|
for k in range(len(input_data)):
|
|
output[k][0] += random.random() * epsilon
|
|
|
|
return output
|
|
|
|
|
|
|
|
class RobustnessExperiment:
|
|
def __init__(self, population_size, log_step_size, net_input_size, net_hidden_size, net_out_size, net_learning_rate,
|
|
ST_steps, directory_name) -> None:
|
|
self.population_size = population_size
|
|
self.log_step_size = log_step_size
|
|
self.net_input_size = net_input_size
|
|
self.net_hidden_size = net_hidden_size
|
|
self.net_out_size = net_out_size
|
|
|
|
self.net_learning_rate = net_learning_rate
|
|
|
|
self.ST_steps = ST_steps
|
|
self.fixpoint_counters = {
|
|
"identity_func": 0,
|
|
"divergent": 0,
|
|
"fix_zero": 0,
|
|
"fix_weak": 0,
|
|
"fix_sec": 0,
|
|
"other_func": 0
|
|
}
|
|
self.id_functions = []
|
|
|
|
self.directory_name = directory_name
|
|
os.mkdir(self.directory_name)
|
|
|
|
self.nets = []
|
|
# Create population:
|
|
self.populate_environment()
|
|
print("Nets:\n", self.nets)
|
|
|
|
self.count_fixpoints()
|
|
[print(net.is_fixpoint) for net in self.nets]
|
|
self.test_robustness()
|
|
|
|
def populate_environment(self):
|
|
loop_population_size = tqdm(range(self.population_size))
|
|
for i in loop_population_size:
|
|
loop_population_size.set_description("Populating robustness experiment %s" % i)
|
|
|
|
net_name = f"net_{str(i)}"
|
|
net = Net(self.net_input_size, self.net_hidden_size, self.net_out_size, net_name)
|
|
|
|
for _ in range(self.ST_steps):
|
|
input_data = net.input_weight_matrix()
|
|
target_data = net.create_target_weights(input_data)
|
|
net.self_train(1, self.log_step_size, self.net_learning_rate)
|
|
|
|
self.nets.append(net)
|
|
|
|
def test_robustness(self):
|
|
# test_for_fixpoints(self.fixpoint_counters, self.nets, self.id_functions)
|
|
|
|
zero_epsilon = pow(10, -5)
|
|
data = [[0 for _ in range(10)] for _ in range(len(self.id_functions))]
|
|
|
|
for i in range(len(self.id_functions)):
|
|
for j in range(10):
|
|
original_net = self.id_functions[i]
|
|
|
|
# Creating a clone of the network. Not by copying it, but by creating a completely new network
|
|
# and changing its weights to the original ones.
|
|
original_net_clone = Net(original_net.input_size, original_net.hidden_size, original_net.out_size,
|
|
original_net.name)
|
|
# Extra safety for the value of the weights
|
|
original_net_clone.load_state_dict(copy.deepcopy(original_net.state_dict()))
|
|
|
|
noisy_weights = add_noise(original_net_clone.input_weight_matrix())
|
|
original_net_clone.apply_weights(noisy_weights)
|
|
|
|
# Testing if the new net is still an identity function after applying noise
|
|
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
|
|
|
|
# If the net is still an id. func. after applying the first run of noise, continue to apply it until otherwise
|
|
while still_id_func and data[i][j] <= 1000:
|
|
data[i][j] += 1
|
|
|
|
original_net_clone = original_net_clone.self_application(1, self.log_step_size)
|
|
|
|
still_id_func = is_identity_function(original_net_clone, zero_epsilon)
|
|
|
|
print(f"Data {data}")
|
|
|
|
if data.count(0) == 10:
|
|
print(f"There is no network resisting the robustness test.")
|
|
text = f"For this population of \n {self.population_size} networks \n there is no" \
|
|
f" network resisting the robustness test."
|
|
write_file(text, self.directory_name)
|
|
else:
|
|
box_plot(data, self.directory_name, self.population_size)
|
|
|
|
def count_fixpoints(self):
|
|
exp_details = f"ST steps: {self.ST_steps}"
|
|
|
|
self.id_functions = test_for_fixpoints(self.fixpoint_counters, self.nets)
|
|
bar_chart_fixpoints(self.fixpoint_counters, self.population_size, self.directory_name, self.net_learning_rate,
|
|
exp_details)
|
|
|
|
|
|
def run_robustness_experiment(population_size, batch_size, net_input_size, net_hidden_size, net_out_size,
|
|
net_learning_rate, epochs, runs, run_name, name_hash):
|
|
experiments = {}
|
|
|
|
check_folder("robustness")
|
|
|
|
# Running the experiments
|
|
for i in range(runs):
|
|
ST_directory_name = f"experiments/robustness/{run_name}_run_{i}_{str(population_size)}_nets_{epochs}_epochs_{str(name_hash)}"
|
|
|
|
robustness_experiment = RobustnessExperiment(
|
|
population_size,
|
|
batch_size,
|
|
net_input_size,
|
|
net_hidden_size,
|
|
net_out_size,
|
|
net_learning_rate,
|
|
epochs,
|
|
ST_directory_name
|
|
)
|
|
pickle.dump(robustness_experiment, open(f"{ST_directory_name}/full_experiment_pickle.p", "wb"))
|
|
experiments[i] = robustness_experiment
|
|
|
|
# Building a summary of all the runs
|
|
directory_name = f"experiments/robustness/summary_{run_name}_{runs}_runs_{str(population_size)}_nets_{str(name_hash)}"
|
|
os.mkdir(directory_name)
|
|
|
|
summary_pre_title = "robustness"
|
|
summary_fixpoint_experiment(runs, population_size, epochs, experiments, net_learning_rate, directory_name,
|
|
summary_pre_title)
|
|
|
|
if __name__ == '__main__':
|
|
raise NotImplementedError('Test this here!!!')
|